MULTICORE DESIGN SIMPLIFIED

Simulation Based Analysis and Debug of Heterogeneous Platforms

Design Automation Conference, Session 60 4 June 2014

Simon Davidmann, Imperas

Agenda

- Programming on heterogeneous platforms
- Hardware-based software development, debug and test
- Software simulation using virtual platforms
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA

Summary

Agenda

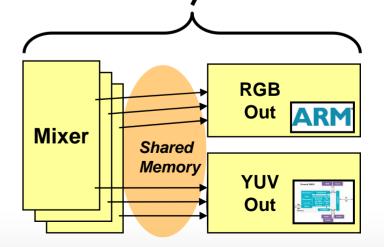
- Programming on heterogeneous platforms
- Hardware-based software development, debug and test
- Software simulation using virtual platforms
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA

Summary

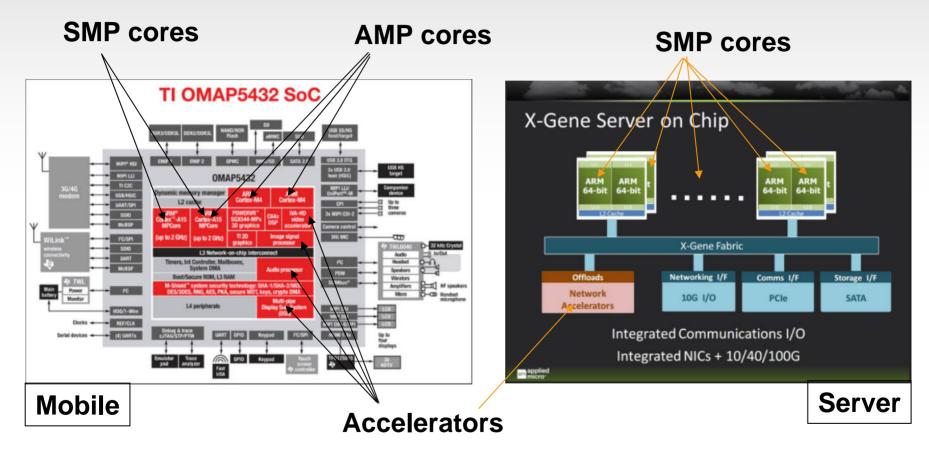
Symmetric MultiProcessing (SMP) Architecture	Asymmetric MultiProcessing (AMP) Architecture

	Symmetric MultiProcessing (SMP) Architecture	Asymmetric MultiProcessing (AMP) Architecture
Homogeneous Processor Resources		
Heterogeneous Processor Resources		

	Symmetric MultiProcessing (SMP) Architecture	Asymmetric MultiProcessing (AMP) Architecture		
Homogeneous Processor Resources		Heterogeneous system		
Heterogeneous Processor Resources		Heterogeneous system		
	Mixer	RGB Out ARM Shared Memory YUV Out		

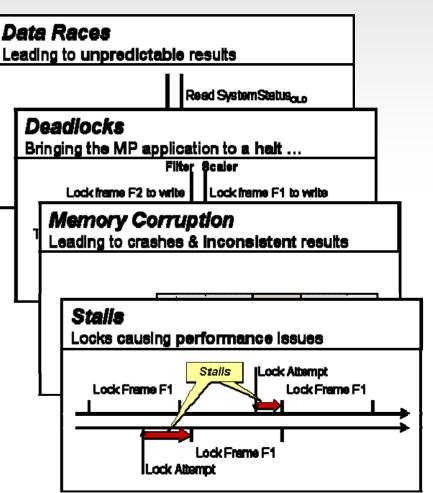


	Symmetric MultiProcessing (SMP) Architecture	Asymmetric MultiProcessing (AMP) Architecture		
Homogeneous Processor Resources	Not heterogeneous, but often a subsystem of a heterogeneous system	Heterogeneous system		
Heterogeneous Processor Resources	N/A (big.LITTLE?)	Heterogeneous system		
	Mixe	RGB Out ARM Shared Memory YUV Out		


	Symmetric MultiProcessing (SMP) Architecture	Asymmetric MultiProcessing (AMP) Architecture	
Homogeneous Processor Resources	Not heterogeneous, but often a subsystem of a heterogeneous system	Heterogeneous system	
Heterogeneous Processor Resources	N/A (big.LITTLE?)	Heterogeneous system	

- Programming languages, tools and paradigms are broadly discussed
 - OpenCL
 - HSA/HSAIL
 - C/C++ ...
 - Brute force!

Example Heterogeneous Systems



How to Analyze and Debug Heterogeneous Platforms?

- Heterogeneous systems have unique issues
 - Multiple processors
 - Different multiple processors
 - Multiple ISAs
 - Multiple operating systems
 - Hypervisors
 - Interprocessor communications (coherent and non-coherent)
 - Memory issues
 - Race/deadlock/stall conditions

• ..

. . .

Agenda

- Programming on heterogeneous platforms
- Limitations of hardware-based software development, debug and test
- Software simulation (virtual platform) advantages for operating system porting, bring up and verification
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA
- Summary

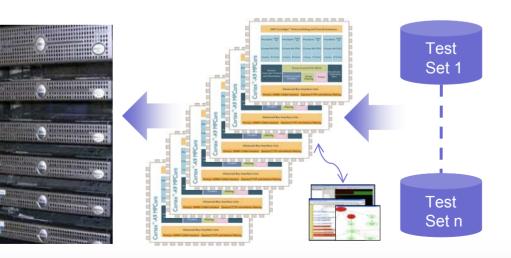
Limitations of Hardware-Based Software Development

- Traditional breadboard / emulation based testing
 - Limited physical system availability
 - Limited external test access (controllability)
 - Limited internal observability
 - Typically 6 months or more until available to team
- To get around these limitations, software is modified
 - printf added to code
 - Debug versions of OS kernels
 - Code is instrumented for specific analytical tools, e.g. code coverage, profiling
- Modified software may not have the same behavior as clean source code

TICORE DESIGN SIMPLIFIED

peras

Agenda



- Programming on heterogeneous platforms
- Limitations of hardware-based software development, debug and test
- Software simulation (virtual platform) advantages for operating system porting, bring up and verification
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA
- Summary

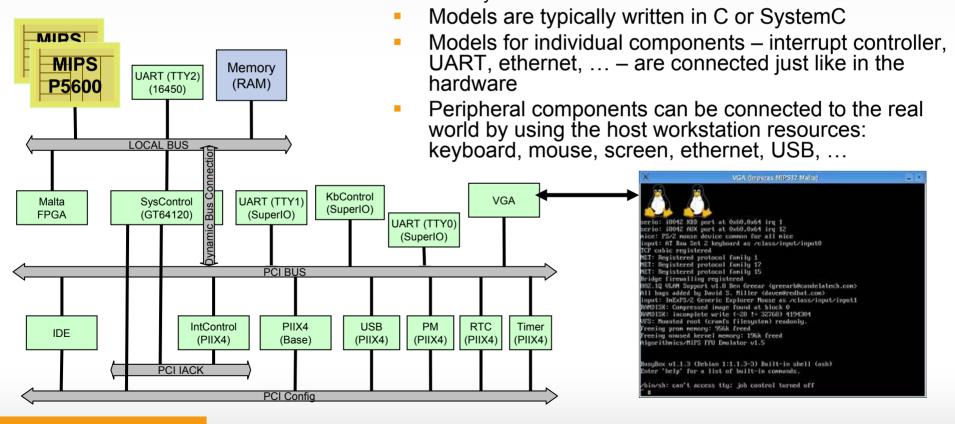
Advantages of Virtual Platform Based Software Development

- Earlier system availability
- Full controllability of platform both from external ports and internal nodes
- Full visibility into platform
- Performance can be faster than real time
- Easy to replicate platform and test environment to support regression testing on compute farms

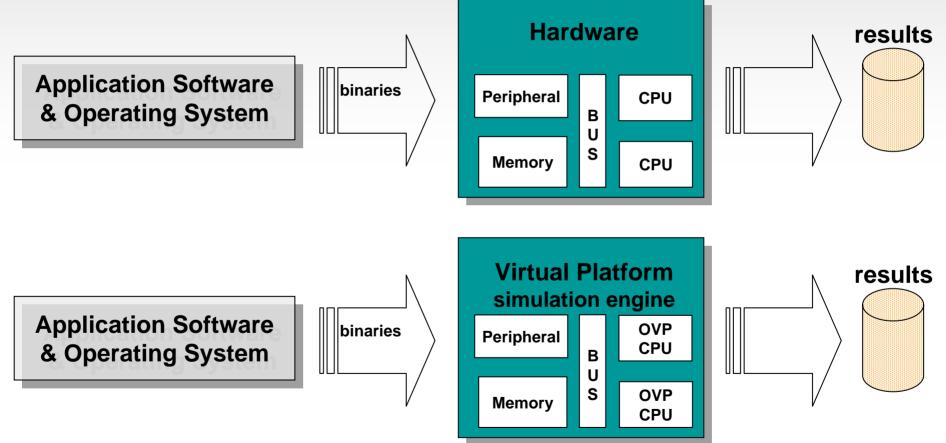
Virtual Platforms (Software Simulation)

The virtual platform is a set of models that reflects the

hardware on which the software will execute


Subset / subsystem of a single device

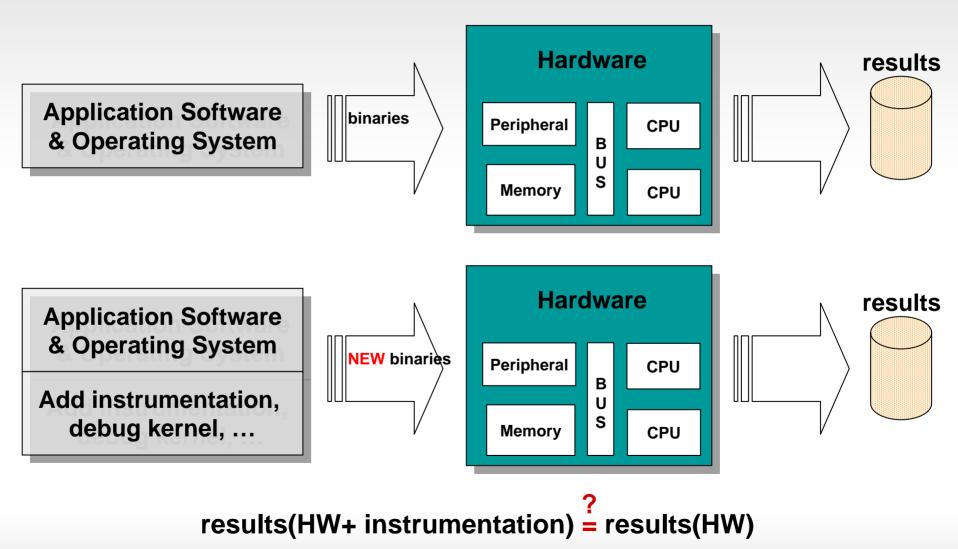
Processor chip


Board

System

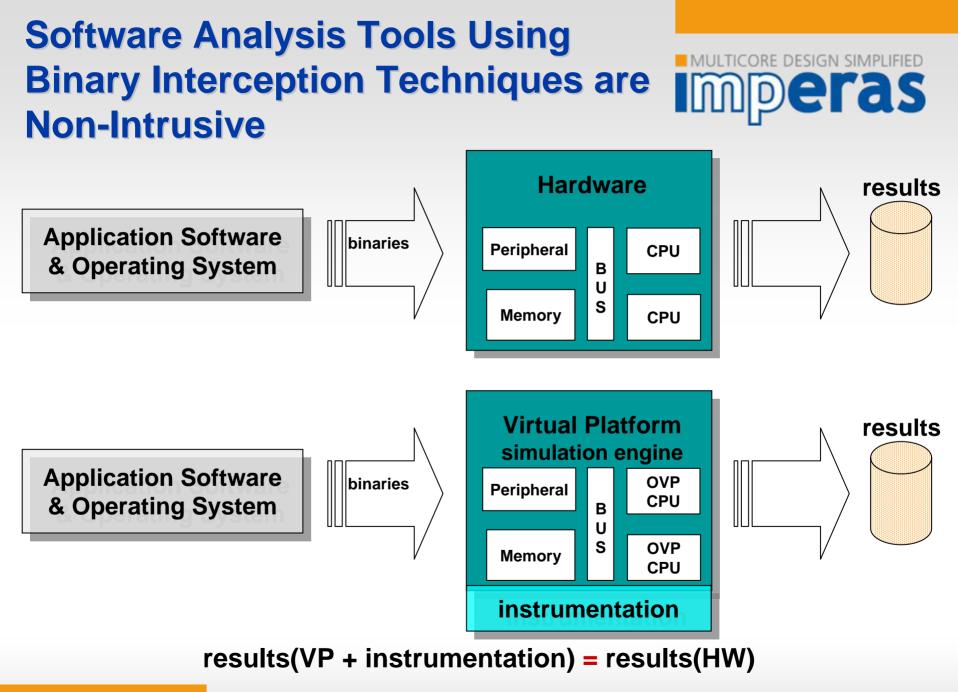
Software is executed unchanged, such that the software does not know that it is not executing on the hardware

Virtual Platforms Simulate the Software Running on the Hardware


results(VP) = results(HW)

MULTICORE DESIGN SIMPLIFIED

eras


Software Analysis Tools on HW Platforms Have Validity Questions

MULTICORE DESIGN SIMPLIFIED

© 2014 Imperas Software Ltd

Page 17

And Virtual Platform simulators can be very fast

	Altera Nios II			ARM32			Imagination MIPS32		
Benchmark	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS
linpack	3,075,857,171	2.52s	1225	6,105,766,856	4.79s	1277	9,814,621,392	5.31s	1852
Dhrystone	1,810,082,387	1.18s	1547	2,250,079,359	2.32s	974	1,795,088,667	1.27s	1414
Whetstone	5,850,887,389	3.28s	1789	1,185,959,501	1.04s	1140	1,890,420,892	0.93s	2033
peakSpeed2	22,000,013,458	3.11s	7097	22,400,008,766	4.67s	4807	22,800,009,853	4s	5714
	Xilinx	Micro	Blaze	ARM	AArch	164	Imagina	tion N	IIPS64
Benchmark	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS
linpack	6,386,275,159	3.77s	1699	594,945,589	1.01s	594*	1,558,856,686	0.83s	1901
Dhrystone	3,770,115,740	2.61s	1450	3,030,061,475	2.79s	1086	1,590,094,345	1.23s	1293
Whetstone	27,108,532,655	13.23s	2054	488,724,620	0.64s	759*	2,133,926,552	0.99s	2156
peakSpeed2	22,000,023,433	5.76s	3826	11,200,003,894	3.73s	3011	17,100,018,075	4.23s	4052
	PowerPC			Renesas v850			Synopsys ARC		
Benchmark	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS	Simulated Instructions	Run time	Simulated MIPS
linpack	3,163,966,113	2.95s	1076	4,991,344,159	4.76s	1051	4,184,162,664	3.67s	1143
Dhrystone	2,205,068,239	1.75s	1260	6,410,133,101	4.01s	1603	3,155,082,476	2.75s	1148
MARL AND A	6,424,865,755	3.97s	1622	10,296,940,591	7.41s	1393	7,883,567,047	4.4s	1796
Whetstone									

Example speed of Imperas simulation models

And booting OS can be fast too

MULTICORE DESIGN SIMPLIFIED

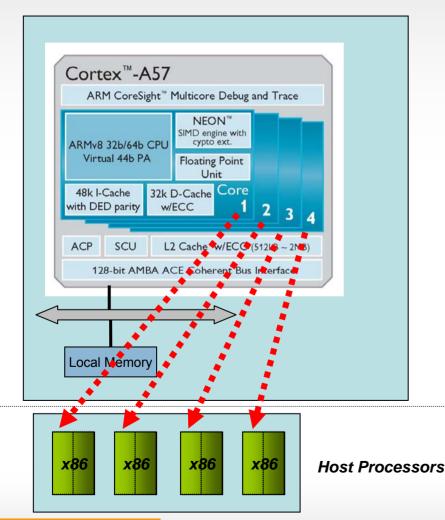
C:\Windows\system32\cmd.exe

Info Final program counter : 0x8001d668 Simulated instructions: 1,131,123,567 Info Info Simulated MIPS : 20.0 Info Info Info Info CPU 'ArmVersatileExpress-CA15/cpu_CPU2' STATISTICS Info Туре : arm (Cortex-A15MPx4) Nominal MIPS Info : 1000 Final program counter : 0x8001d668 Info Simulated instructions: 17,224,484,756 Info Info Simulated MIPS : 304.2 Info Info Info Info CPU 'ArmVersatileExpress-CA15/cpu_CPU3' STATISTICS : arm (Cortex-A15MPx4) Info Туре Nominal MIPS : 1000 Info Info Final program counter : 0x8001d668 Simulated instructions: 1,110,697,906 Info Simulated MIPS Info : 19.6 Info Info Info Info TOTAL Info Simulated instructions: 22,568,501,091 : 398.5 Simulated MIPS Info Info Info Info Info SIMULATION TIME STATISTICS Simulated time : 3264.16 seconds Info Info User time : 55.61 seconds Info System time : 1.01 seconds Elapsed time : 56.89 seconds Info : 57.37x faster Info Real time ratio Info CpuManagerMulti finished: Mon Mar 03 20:50:39 2014

_ _ × ArmVersatileExpress-CA15/uart0 o0/input/input0 usbcore: registered new interface driver usbhid usbhid: USB HID core driver oprofile: no performance counters oprofile: using timer interrupt. TCP: cubic registered NET: Registered protocol family 17 VFP support v0.3: implementor 41 architecture 3 rtc-p1031 1c170000.rtc: setting system clock to 2 MAM) ALSA device list: No soundcards found. Freeing init memory: 188K input: ImExPS/2 Generic Explorer Mouse as /device 00.kmi/serio1/input/input1 This root FS contains most basic linux utilities and the Lynx web browser. Kernel config is available through /proc/config.g Welcome to OVP simulation from Imperas Log in as root with no password. Imperas login:

CpuManagerMulti (64-Bit) v20140224.0 Open Virtual Platform simulator from www.IMPERAS.com. Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

Press any key to continue . . .

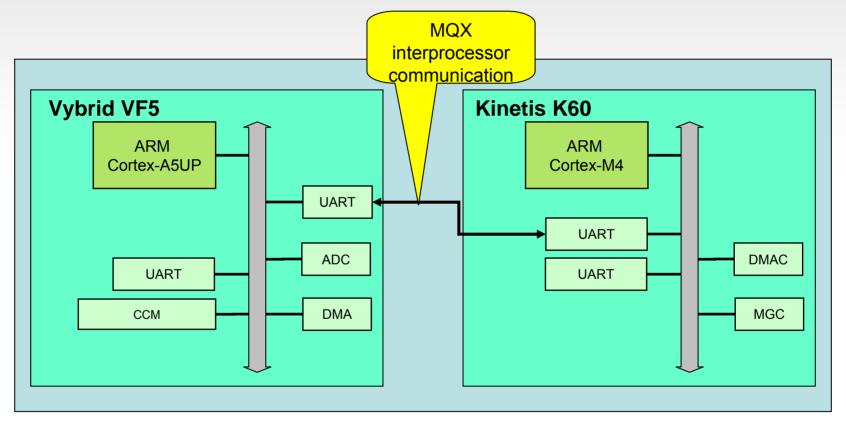

- Boot Linux on ARM Cortex-A15x4 = 6 seconds on Win7 laptop
 Buns simulated Linux applications at 100s of MIPS
 - Runs simulated Linux applications at 100s of MIPS

.

ARMv8 simulation using parallel host-cpu resources

Simulation

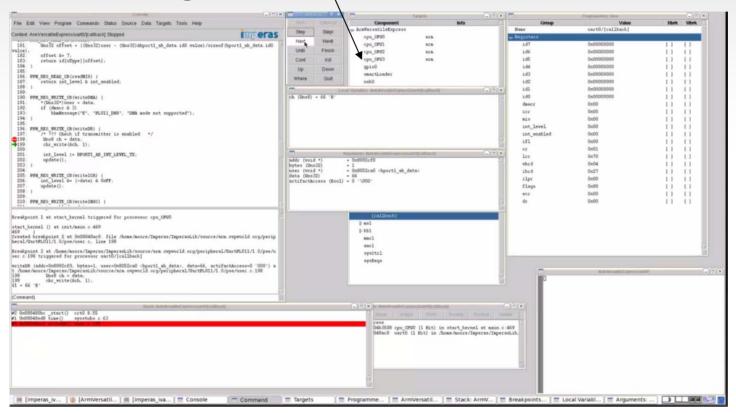
- Advanced parallel synchronization algorithm for SMP, AMP and hardware accelerators
- Transparent operation to user: No model, tool, software changes
- Total performance on benchmarks recorded up to 16 Billion ins/sec
- Performance advantage 15x over nearest commercial alternative



Agenda

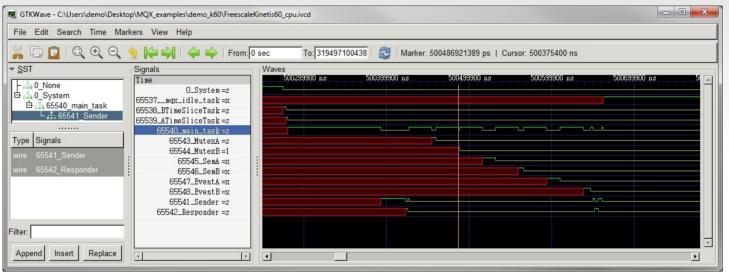
- Programming on heterogeneous platforms
- Limitations of hardware-based software development, debug and test
- Software simulation (virtual platform) advantages for operating system porting, bring up and verification
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA
- Summary

Case Study 1: Interprocessor Communication on Freescale Vybrid – Kinetis Virtual Platform



- Freescale MQX RTOS running on each device
- Uses MQX interprocessor communication capability
- Open Virtual Platforms (OVP, <u>www.OVPworld.org</u>) models

Multicore heterogeneous debug is needed


Select target context

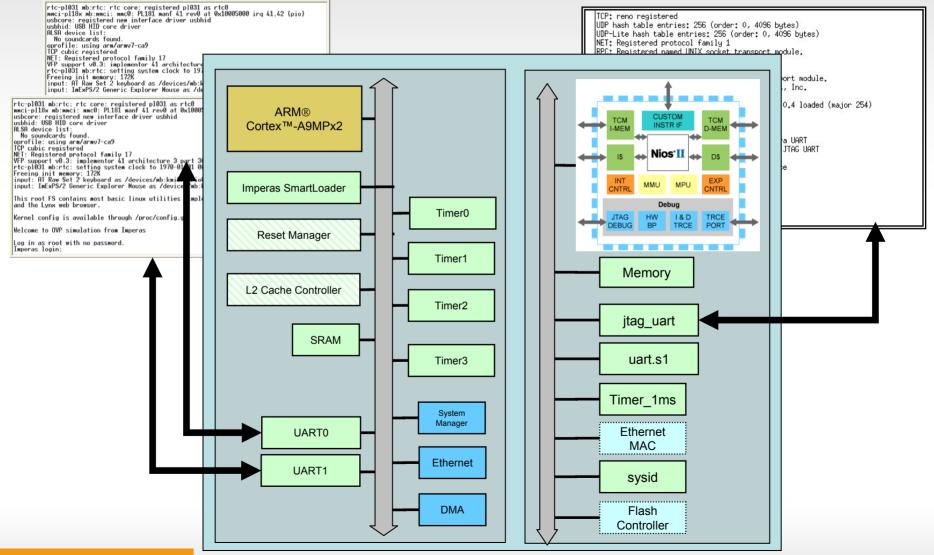
 Single coherent debug of cpus, peripherals, homogeneous, heterogeneous, AMP, SMP

Advanced tools needed too MQX RTOS Scheduler Analysis

MULTICORE DESIGN SIMPLIFIED

Scheduler analysis helps to identify RTOS task scheduling issues

- Imperas tools are non-intrusive
- Tools have understanding of CPUs, OSs
 - CPU-aware: code coverage, profiling, function tracing, fault injection, ...
 - OS-aware: task tracing, event tracing, scheduler analysis, …
- Pre-defined and user-defined tools use same API
- Software assertions can be added to the virtual platform simulation environment


Agenda

- Programming on heterogeneous platforms
- Limitations of hardware-based software development, debug and test
- Software simulation (virtual platform) advantages for operating system porting, bring up and verification
- Case study 1: Interprocessor communications with Freescale Vybrid-Kinetis platform
- Case study 2: OS porting, bring up and verification on Altera Cyclone V SoC FPGA
- Summary

Altera Cyclone V SoC FPGA

Case Study 2: OS Porting, Bring Up and Verification on Altera Cyclone V SoC FPGA

Software use cases (challenges):

- 1) Linux boot on single core ARM Cortex-A9
- 2) SMP Linux boot on dual core ARM Cortex-A9
- 3) RTOS boot on single core ARM Cortex-A9
- 4) AMP boot on dual core ARM Cortex-A9
- 5) Linux boot on single core Nios II
- SMP Linux boot on dual core ARM Cortex-A9 plus Linux boot on Nios II

Cyclone V SoC FPGA Virtual Platform

- Top level virtual platform built using Open Virtual Platforms (OVP, <u>www.OVPworld.org</u>) ICM API
- ARM Cortex-A9MPx2 and Altera Nios II processor core models from the OVP Library
- Peripheral models
 - Some models available in the OVP Library
 - Remaining models of peripheral components developed using OVP APIs
- OVP APIs written for C language
- Simulation engine: Imperas M*SDK
- All OVP processor and peripheral models include both native OVP and native SystemC/TLM2 interfaces, so all the following results could have been achieved using the OSCI SystemC simulator plus Imperas M*SDK product
 - Peripheral models could have been written in SystemC
 - M*SDK tools require OVP processor core models for ToolMorphing capability

1a) Linux Boot on Single Core ARM Cortex-A9

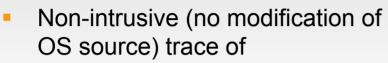
- Use Linux from Altera: Altera-3.4
- Use default configurations
- Use default device trees
 - Comment out a few peripherals not yet modeled
- Bug found in Linux kernel preemptive scheduling
 - Running multiple applications under Linux part of standard Imperas bring up testing
 - Linux boots and runs, but does not switch tasks properly
 - Not observed in previous virtual platform (different virtual platform vendor) using much slower model of ARM Cortex-A9MPx2
 - Could not run multiple applications for long enough simulation to observe the bug
- Approximately 2 man weeks effort to build virtual platform able to boot Linux
- Virtual platform boots Linux in under 5 sec on standard PC, Windows or Linux

1b) OS-Aware Tools Used to Find the Bug

- Use OS tracing [task, execve, schedule, context, ...] to trace at the OS level, not instruction level
 - Higher level of abstraction makes debug easier: ~700,000,000 to boot Linux, however, only ~700 tasks
- OS-aware tools debug in hours, once the bug was observed
- Simulation overhead due to OS-aware tools < 10%

0:1	Imperas Multipr	ocessor	Debugger		- 🗆 >
TRC	(TASK) 81069	1893:	'cpu_CPU0':	free_pid called for pid=412 ('/sbin/mdev')	
				scheduler switched from process 405 ('/bin/sh') to 3 ('ksoftirgd/0')	-
TRC	(SCHD) 81075	53989:	'cpu_CPU0':	scheduler switched from process 3 ('ksoftirgd/0') to 413 ('rcS')	
TRC	(TASK) 81080	35210:	'cpu_CPU0':	do_execve called for pid=413 ('/bin/hostname')	
FRC	(EXEC) 81080	35210:	'cpu_CPU0':	do_execve called for pid=413 with filename=/bin/hostname with:	
FRC	(EXEC) 81080	35210:	'cpu_CPU0':	argy virt=0x000dd24c "hostname"	
FRC	(EXEC) 81080	35210:	'cpu_CPU0':	argy virt=0x000dd264 "Imperas"	
FRC	(EXEC) 81080	35210:	'cpu_CPU0':	envp virt=0x7e943fe2 "USÈR=root"	
RC	(EXEC) 81080		'cpu_CPU0':	enup virt=0x7e943f9f "HOME=/"	
RC	(EXEC) 81080	35210:	'cpu_CPU0':	enup virt=0x7e943fa6 "TERM=vt102"	
RC	(EXEC) 81080	35210:	'cpu_CPU0':	envy virt=0x7e943fb1 "PATH=/sbin:/usr/sbin:/bin:/usr/bin"	
	(EXEC) 81080		'cpu_CPU0':	envp virt=0x7e943fd4 "SHELL=/bin/sh"	
	(EXEC) 81080	35210:	'cpu_CPU0':	enup virt=0x000dd778 "PWD=/"	
	(TASK) 81082			load_elf_binary('/bin/hostname') called for pid=413	
	(TASK) 81128			do_exit called for pid=413 ('/bin/hostname')	
	(SCHD) 81132			scheduler switched from process 413 ('/bin/hostname') to 405 ('/bin/sh')	
	(TASK) 81132			free_pid called for pid=413 ('/bin/hostname')	
	(TASK) 81134			do_exit called for pid=405 ('/bin/sh')	
RC	(SCHD) 81138			scheduler switched from process 405 ('/bin/sh') to 3 ('ksoftirgd/0')	
RC	(SCHD) 81139			scheduler switched from process 3 ('ksoftirgd/0') to 1 ('/init')	
	(TASK) 81140			free_pid called for pid=405 ('/bin/sh')	
RC	(SCHD) 81141	1242:		scheduler switched from process 1 ('/init') to 3 ('ksoftirgd/0')	
	(SCHD) 81141			scheduler switched from process 3 ('ksoftirgd/0') to 414 ('init')	
	(TASK) 81145			do_execve called for pid=414 ('/sbin/getty')	
	(EXEC) 81145			do_execve called for pid=414 with filename=/sbin/getty with:	
	(EXEC) 81145		'cpu_CPU0':		
	(EXEC) 81145		'cpu_CPUO':		
	(EXEC) 81145		'cpu_CPUO':	argv virt=0x7e8fdb33 "38400"	
	(EXEC) 81145		'cpu_CPUO':		
	(EXEC) 81145		'cpu_CPU0':	envp[] = virt=0x000dd008 <not in="" tlb=""></not>	
	(TASK) 81146			load_elf_binary('/sbin/getty') called for pid=414	
	(SCHD) 81148			scheduler switched from process 414 ('/sbin/getty') to 3 ('ksoftirgd/0')	
	(SCHD) 81148			scheduler switched from process 3 ('ksoftirgd/0') to 1 ('/init')	
	(SCHD) 81148			scheduler switched from process 1 ('/init') to 414 ('/sbin/getty')	
	(SCHD) 81200			scheduler switched from process 414 ('/sbin/getty') to 3 ('ksoftirgd/0')	
	(SCHD) 81200			scheduler switched from process 3 ('ksoftirgd/0') to 0 ('swapper')	
				scheduler switched from process 0 ('swapper') to 1 ('/init')	

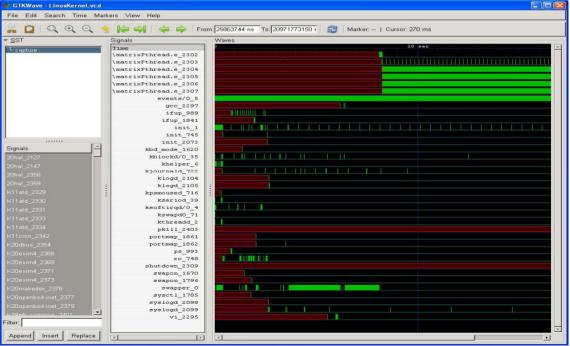
2) SMP Linux Boot on Dual Core ARM Cortex-A9


- Use Linux from Altera: Altera-3.6
- Use default configurations
- Use default device trees
 - Comment out a few peripherals not yet modeled
- No problems in SMP Linux bring up on virtual platform

3a) Micrium µCOS-II Boot on Single Core ARM Cortex-A9

- Use Altera µCOS-II release
- Bugs found and fixed in GIC register accesses using OSaware tools
 - Access ICDICER 1 to 8 when only 0 to 7 exist
 - Access ICDIPTR 08 to 63 when only 00 to 55 exist
- Typically < 1 week effort to add support for new RTOS</p>
- RTOS OS-aware tools include event scheduler viewing as waveform

3b) OS Porting and Bring Up


- process creation
- context switch
- process deletion
- Captures communications between processes

- Supported OS include Linux, FreeRTOS, Nucleus, µC/OS
 - < 1 week to support new RTOS</p>

MULTICORE DESIGN SIMPLIFIED

eras

View in waveform viewer

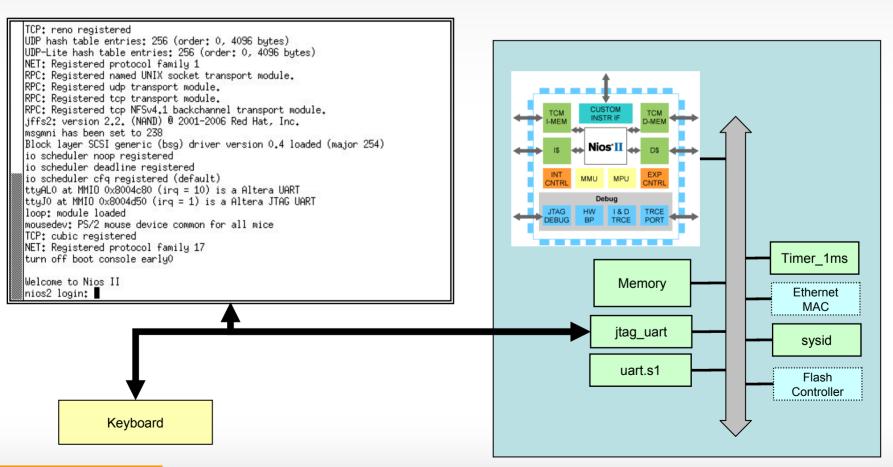
© 2014 Imperas Software Ltd

4a) AMP boot on Dual Core ARM Cortex-A9

- Linux booting on first core, μC/OS-II on second core
- Bug found in Linux accesses of GIC registers
- Virtual platform debug took 2 days versus 2 weeks on hardware platform (5x improvement)
- Also need to ensure that different operating systems do not access forbidden memory segments

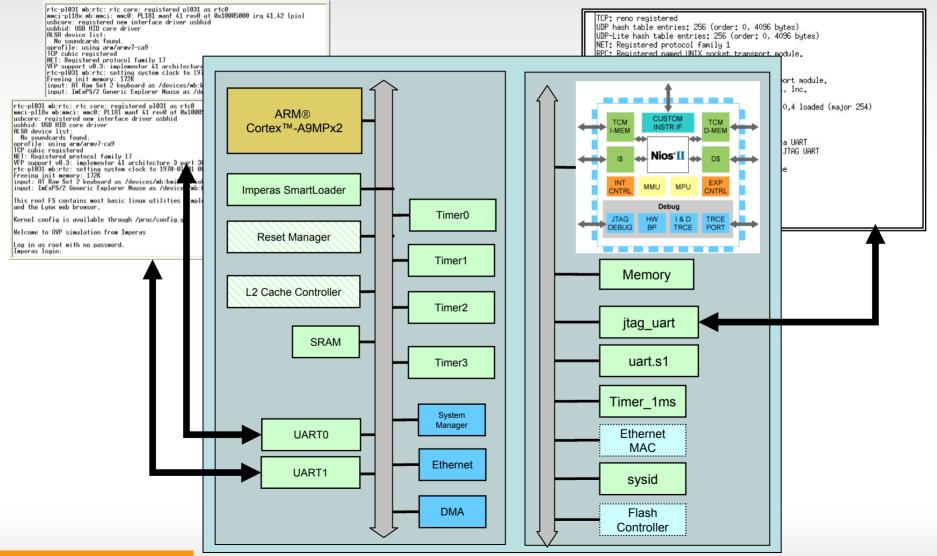
4b) Custom Memory Access Monitor Accelerates AMP Platform Debug

- Memory access monitor is just C code, less than 350 lines, loaded into simulation environment
- When simulation is run, monitor produces warning if memory access rules are violated


//								
// Define watch areas for memory and peripherals defined in the platform								
//								
<pre>memWatchT amcWatch[] = {</pre>								
// name	watchLow	watchHigh	allowedCPUs					
{ "Linux memory",	0,	0x2fffffff,	LINUX_CPU },					
{ "uCOS memory",	0x30000000,	0x31ffffff,	UCOSII_CPU },					
{ "gmac0",	0xff700000,	0xff700fff,	LINUX_CPU },					
{ "emac0_dma",	0xff701000,	0xff701fff,	LINUX_CPU },					
{ "gmac1",	0xff702000,	0xff702fff,	LINUX_CPU },					
{ "emac1_dma",	0xff703000,	0xff703fff,	LINUX_CPU },					
{ "uart0",	0xffc02000,	0xffc02fff,	LINUX_CPU },					
{ "uart1",	0xffc03000,	0xffc03fff,	UCOSII_CPU },					
{ "CLKMGR",	0xffd04000,	0xffd04fff,	LINUX_CPU },					
{ "RSTMGR",	0xffd05000,	0xffd05fff,	LINUX_CPU },					
{ "SYSMGR",	0xffd08000,	0xffd08fff,	LINUX_CPU },					
{ "GIC",	0xfffec000,	0xfffedfff,	LINUX_CPU },					
{ "L2",	0xfffef000,	Oxfffeffff,	LINUX_CPU },					
$\{ 0 \} / *$ Marks end of list */								
};								

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008 Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010 Warning (AMPCHK_MRV) cpu_CPU1: AMP read access violation in Linux memory area. PA: 0x0000020 VA: 0x0000020

5) Linux on Single Core Altera Nios II



- Altera Cyclone III 3c120
- Linux booting on Nios II processor core model
- No issues with Linux boot

6) Heterogeneous AMP Platform Altera Cyclone V Cortex A9MPx2 (SMP Linux) and Nios II (Linux)

© 2014 Imperas Software Ltd

4-Jun-14

Summary

- Heterogeneous platforms require not only new programming tools but also new debug and analysis tools
- Hardware-based software testing has limitations in controllability and observability
- Instruction accurate software simulation virtual platforms – has the required controllability and observability
- Use of virtual platform based tools can provide both higher quality and reduced schedules for heterogeneous systems
- Results were shown for heterogeneous ARM-ARM on Freescale Vybrid and Kinetis, and for ARM-Nios II AMP system on Altera Cyclone V SoC FPGA