

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 28 - MARCH 3, 2022

Introduction to RISC-V CPU design verification

Kevin McDermott, Imperas Software

- Welcome and agenda
- Introduction to RISC-V DV
- Imperas News Highlights for DVCon 2022
- Conclusions

Imperas at DVCon 2022

- Tutorial: 'Introduction to the 5 levels of RISC-V Processor Verification'
 - Simon Davidmann and Lee Moore Imperas Software
 - Monday February 28th 9:00-11:00am PST
- Presentation: 'Introduction to RISC-V CPU design verification'
 - Kevin McDermott Imperas Software
 - Tuesday March 1st 12:30-1:00 pm PST
- Presentation: 'Imperas RISC-V Design Verification solutions'
 - Larry Lapides Imperas Software
 - Tuesday March 1st 1:00-1:30pm PST

Introduction to RISC-V CPU design verification

Highlights for this talk

- RISC-V is changing the options that SoC designers have in their tool kits
- RISC-V means many teams are designing new processors, or modifying source of processors
- For RISC-V anybody can be 'an architecture licensee'
- And every CPU needs verifying... in detail... (its not like buying in pre-verified IP)
- Many people are new to CPU DV for the first time
 - Traditionally done behind closed doors in commercial/proprietary companies
- This presentation aims to introduce the main approaches of RISC-V CPU DV
- And discusses pros and cons of the different approaches
- Also it introduces the main components needed in any RISC-V processor DV environment

Introduction to Imperas Involvement with RISC-V

- Imperas develops simulators, tools, debuggers, modeling technology, and models to help embedded systems developers get their software running...
- ...and hardware developers get their designs correct
- 14+ years, self funded, profitable, UK based, team with much EDA (simulators, verification), processors, and embedded experience
- Staff worked in Arm, MIPS, Imagination, Tensilica, Cadence, Synopsys,
- and in verification in EDA on development of Verilog, VCS, SystemVerilog, Verisity and their methodologies
- Started work with customers on RISC-V in 2017
- Contributed to RISC-V compliance since 2018, RISC-V DV since 2019
- Our RISC-V focus is CPU verification

Page 6

- We provide configurable reference models, the fastest highest quality simulators, advanced development tools and the absolute best solution for RISC-V hardware design verification
- 20+ of the leading RISC-V CPU developers use and rely on Imperas solutions

www.imperas.com www.OVPworld.org

© Imperas Software Ltd.

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
- Components of RISC-V CPU DV environment

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
- Components of RISC-V CPU DV environment

- RISC-V (pronounced "risk-five") is an open standard instruction set architecture (ISA) that began in 2010 and is based on established reduced instruction set computer (RISC) principles
- Unlike most other ISA designs, RISC-V is provided under open source licenses that do not require fees to use
- The project began in 2010 at the University of California, Berkeley, but now many current contributors are volunteers not affiliated with the university
- Unlike other academic designs which are typically optimized only for simplicity of exposition, the designers intended that the RISC-V instruction set be usable for practical computers

Industry innovation on RISC-V

Hardware
– RV32 –

Complexity

Hardware ISA Definition Test Chips

Software

Tests

2010 - 2016

Proof of Concept SoCs Minion processors for power management, communications, ...

Software Bare metal software 2017 – 2018

2019 - 2020

Hardware

RV32, privilege
 modes, interrupts -

IoT SoCs

Microcontrollers

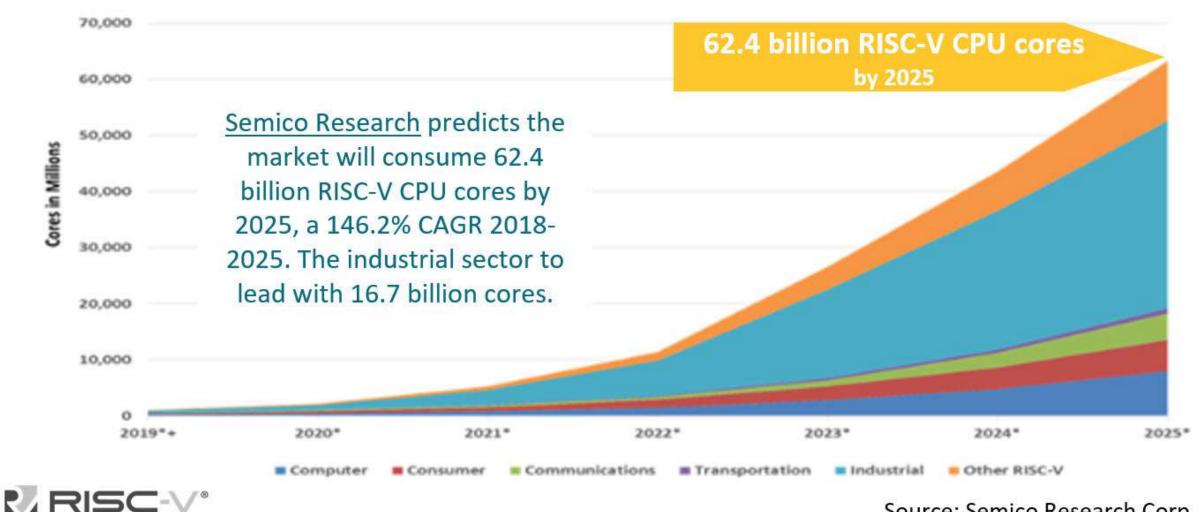
Software

RTOS

Firmware

Hardware

 – RV64, multi-heart CPUs, vectors, bit manipulation,
 hypervisors, debug mode –


> Al SoCs Application processors

Software Linux Drivers Al Compilers

2021

Rapid RISC-V growth led by industrial

Source: Semico Research Corp

Cloud and data center top

providers like Amazon and Alibaba are designing their own chips.

Automotive

is transforming from autonomous vehicles to infotainment to safety, the whole vehicle relies on innovative electronics.

Industrial IoT

incorporating artificial intelligence in manufacturing and industrial processes. . . .

(((q)))

Mobile and

wireless continue rapid

evolution with each generation of hardware and increased capability.

Consumer and IoT devices bring

incredible innovation and volume with billions of connected devices in the next 5-10 years.

Memory was largest

semiconductor category by sales with \$158 billion in 2018, and the fastest-growing.

RISC-V adoption spans industries and workloads

More than 2,200 RISC-V Members across 70 Countries

	102 Chip	4 Systems
	SoC, IP, FPGA	ODM, OEM
	4 I/O Memory, network, storage	13 Industry Cloud, mobile, HPC, ML, automotive
	17 Services	95 Research
	Fab, design services	Universities, Labs, other alliances
	42 Software	
	Dev tools, firmware, OS	1,900+ Individuals
Q3	Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4	RISC-V engineers and advocates Q1 Q2 Q3 Q4 Q1 Q2

RISC-V membership grew 133% in 2020. In 2021, RISC-V membership has already doubled.

RISC-V Innovation Roadmap Al Socs, Application

Test Chips Software tests Linux portProof of Concept SoCs Minion processors for power management, communications Bare metal software		IoT SoCs Microcontrollers RTOS, Firmware Development tools Technical Steering Committee, HPC SIG, GlobalPlatform partnership		processors, Linux Drivers, AI Compilers Dev Board program Development Partners RISC-V Labs, Security response process, AI SIG, Graphics SIG, Android SIG, Communications SIG		Industry Adoption Proliferation of RISC-V CPUs across performance and application spectrum RISC-V dominant in universities Strategic and growing adoption in HPC, automotive, transportation, cloud, industrial, communications, IoT, enterprise, consumer, and other applications		
2010 - 2016	20	17		2018		2019	2020	2021
ISA Definition RISC-V Foundation	Base in Integer point, r divide, compace Priv mo Interru excepti model,			s, memory otection,	y 2 race 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RISC-V Profiles & Platforms Crypto Scalar Virtual Memory Hypervisor & Advanced interrupt architecture Cache mgt ops Code size reduction*	Cache management phase 2* and more	
RIS	- -v* ,	On track, su	bject to change		1	Trusted Execution Environment* P (Packed SIMD)*	Technic	al Deliverables

RISC-V == Freedom...

Freedoms enabled by RISC-V are a huge opportunity

RISC-V == Freedom...

Freedoms enabled by RISC-V are a huge opportunity

Freedoms enabled by RISC-V are a huge challenge for verification

the largest change in the industry since? ...

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
- Components of RISC-V CPU DV environment

Challenges in RISC-V CPU DV

- Feature selection and choices require serious consideration due to implications of every choice
 - Experienced architecture teams know the costs associated with every feature
 - Every addition dramatically increases (doubles ?) verification & compounds verification complexity
 - Costs of simple added feature can be huge and unknown to inexperienced teams
 - Adds schedule, resources, quality costs == big risks...
- As of 2021, No off-the-shelf toolkit/products available for DV of processors
 - No EDA vendor has 'RISC-V CPU DV kit' product
 - There are in-house proprietary solutions in CPU developers... Intel, AMD, Arm, ...
 - Building your own adds schedule, resources, quality costs and risks
- Current SoC cost is 50% for HW DV (with CPUs bought in as proven IP)
 - Developing own CPU adds huge DV incremental schedule, resources, quality challenges

mperas

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

mperas

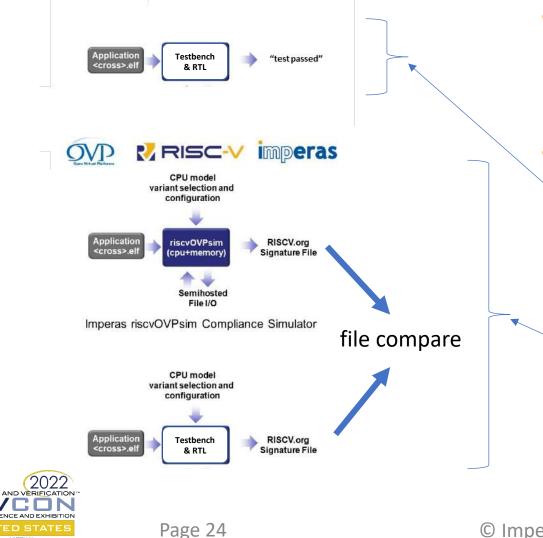
Agenda

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

Note that not all projects have the same requirements, schedule or verification needs – so each project's DV needs may / will differ

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

- "if I can get a program to run then my DV is done... right?"
- "my DV challenge is sorted if I can get Linux to boot on my design..."
- Basically this level of DV is where developer feels if they can get their current compilation of their current program to run (through one path) - then their silicon design job is done
- This may be fine for test chips, research, academic, hobbyists, but NOT for products
- This approach is often due to lack of knowledge or interest in quality, ...



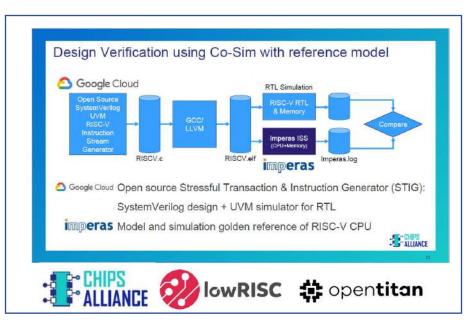
- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

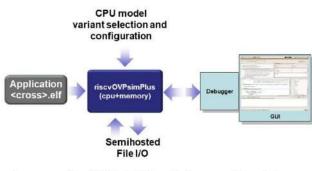
#1: Simple (results) check (1b) (use e.g. riscvOVPsim ISS from GitHub)

FEBRUARY 28 - MARCH 3, 2023

- Run RTL DUT in testbench
 - (no real testbench)
 - Just loads & runs the test program

Either


- Each test program checks its results = go/no go test
 - Prints message to log
 - or writes bit to memory
- Or, then run ISS, write log or signature file
 - Compare/diff file results (afterwards)
 - This is the approach taken by RISCV International for their architectural validation ("compliance tests")



- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

#2: Entry Level DV: post-sim trace-compare (use e.g. riscvOVPsimPlus ISS from OVPworld)

Imperas riscvOVPsimPlus Reference Simulator

Page 26

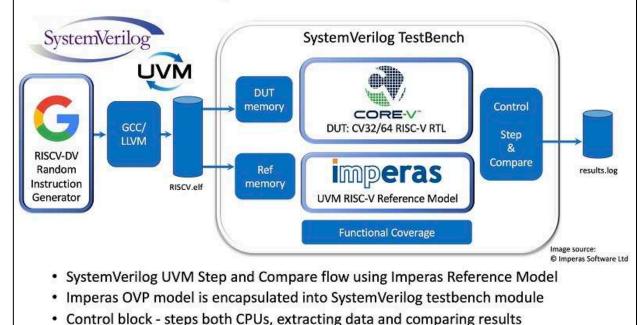
Process

• use random generator (ISG) to create tests

- during simulation of ISS write trace log file
- during simulation of RTL write trace log file
- at the end of both runs, run logs through compare program to see differences / failures
- ISS: riscvOVPsimPlus includes Trace and GDB interface
 - Free ISS: <u>https://www.ovpworld.org/riscvOVPsimPlus</u>
- ISG: riscv-dv from Google Cloud / Chips Alliance
 - Free ISG: <u>https://github.com/google/riscv-dv</u>

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

#3: Industrial Quality Sync DV (sync-lock-step-compare)

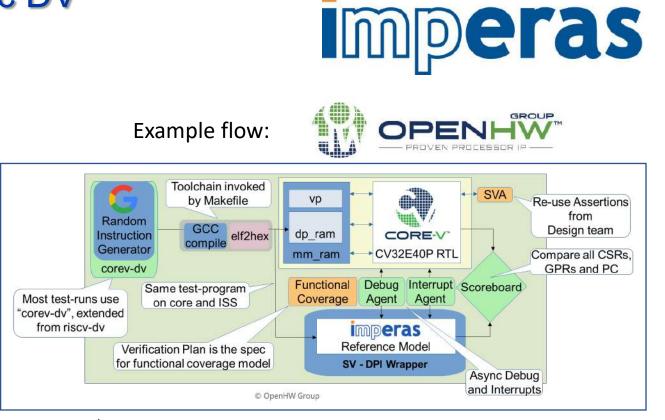

Example flow:

Tandem lockstep run – both reference and DUT run together in lock step

- Not very complex to obtain, set up
- Compare PC, CSRs, GPRs, other internal state instruction by instruction
- No requirement on data saving
- No requirement on known good results in test
- Will not work for async events and control flow ,
 ... it is all about the data flow
- [OpenHW evolved into using async see later slides]

Coverage Driven Verification of OpenHW CORE-V Processors with Imperas RISC-V Golden Reference Model

1st Generation OpenHW flow (1H2020)



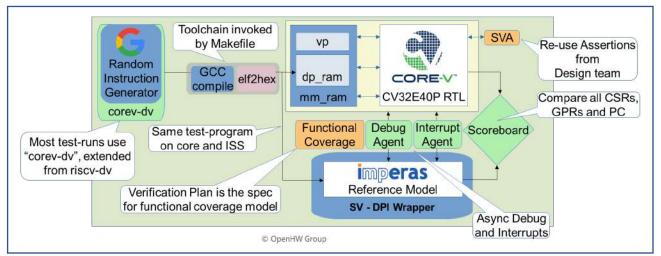
- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

#4: Industrial Highest Quality Async DV (async-lock-step-compare)

- Builds on & extends Industrial Quality sync-lock-step-compare DV
- Adds focus on async capabilities
- Depending on design this can include: OoO, MP, debug mode, interrupts, multi-issue, ...
 - Example SystemVerilog Components
 - tracer: Reports instructions for checking and register writebacks
 - step_and_compare: Manages the reference model and checks functionality
 - interrupt_assert: Properties for interrupt coverage/checking
 - debug_assert: Properties for debug coverage/checking
- Typically hard, complex, and expensive to get working
 - Challenge is extracting async info from microarchitecture RTL pipeline
 - See latest developments with RVVI and ImperasDV

2nd generation CV32E40P OpenHW flow (2H2020) (Imperas model encapsulated in SystemVerilog)

- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
- Components of RISC-V CPU DV environment

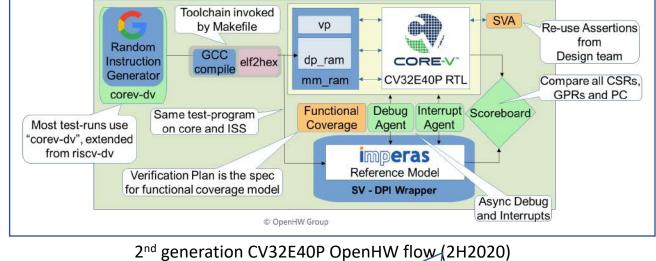


- Brief Introduction to RISC-V
- RISC-V CPU HW DV approaches
 - #0 "hello world" test
 - #1 self checking tests (e.g. Berkeley torture tests pre2018)
 - #2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
 - #3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
 - #4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
 - #5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)
 - Digression into why we need standards...
- Components of RISC-V CPU DV environment

Challenges moving forward – the need for standards

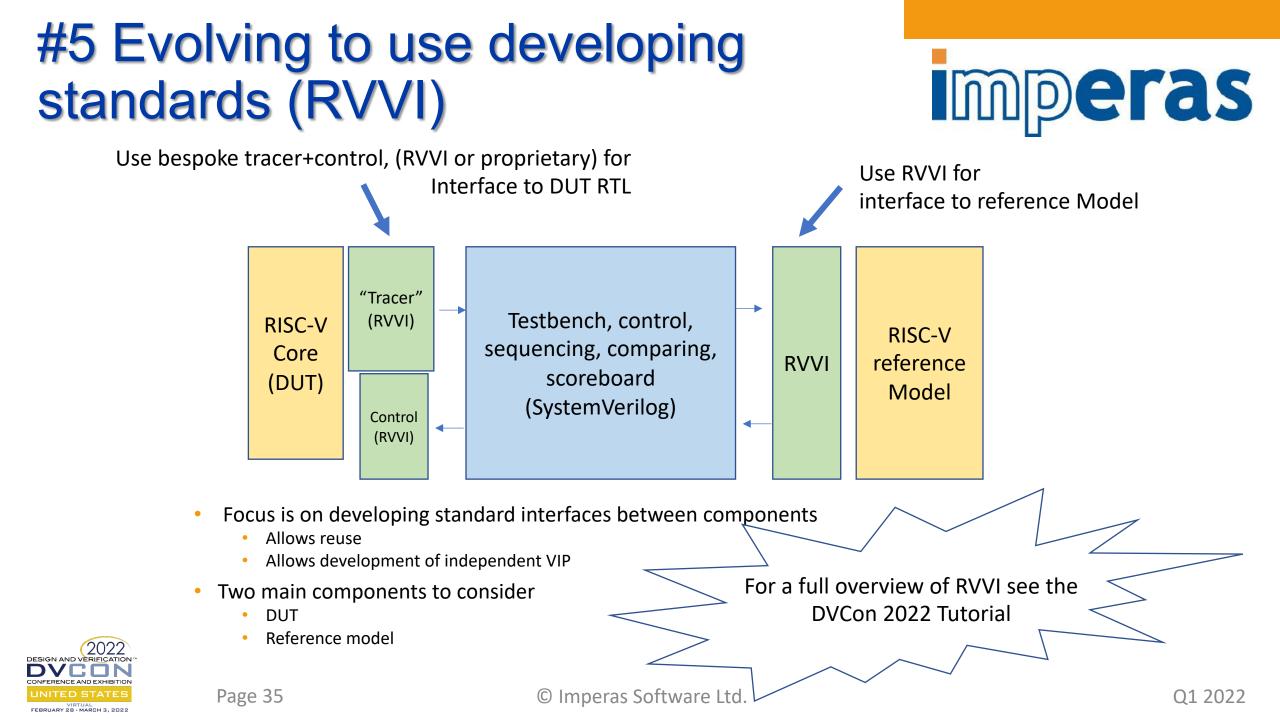
- There are many different components needed:
 - DUT & its encapsulation
 - 'tracer' information
 - Control
 - Reference model & its encapsulation
 - Configuration
 - Comparisons
 - Synchronization
 - Asynchronous operations
 - Control
 - Functional coverage measurement & assertions
 - Test bench
 - Configuration
 - Overall control
 - Scoreboarding
 - Reporting / Logging
 - Tests (directed or generated)
 - Program linker scripts and binary file reader
- And each component has different interfaces and requirements on the interfaces

Imperas


2nd generation CV32E40P OpenHW flow (2H2020)

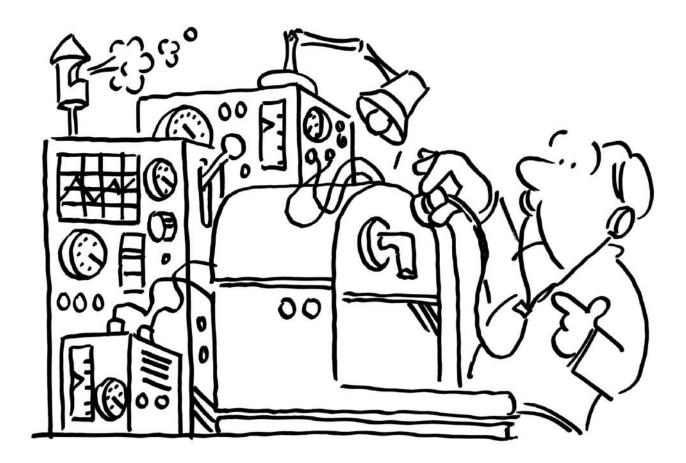
Challenges moving forward – the need for standards

- There are many different components needed:
 - **DUT & its encapsulation**
 - 'tracer' information
 - Control
 - Reference model & its encapsulation
 - Configuration
 - Comparisons
 - Synchronization
 - Asynchronous operations
 - Control
 - Functional coverage measurement & assertions
 - Test bench
 - Configuration
 - **Overall control**
 - Scoreboarding
 - Reporting / Logging
 - Tests (directed or generated)
 - Program linker scripts and binary file reader
- And each component has different interfaces and ٠ requirements on the interfaces



It would be a disaster for RISC-V if every design team had to re-invent everything...

© Imperas Software Ltd


DESIGN AND VERIFICATION VIRTUAL FEBRUARY 28 - MARCH 3, 2022

Page 34

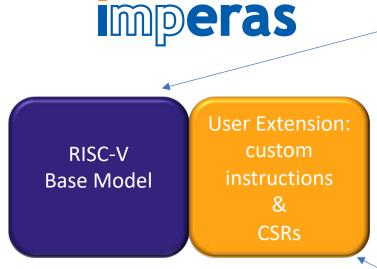
Key component is Reference Model

- RISC-V is highly configurable & extendable
 - 200... Questions ?
- So it can get a little complicated

Example reference model: Imperas

http://www.imperas.com/riscv

- Imperas provides full RISC-V Specification envelope model
- Industrial quality model /simulator of RISC-V processors for use in compliance, verification and test development
- Complete, fully functional, configurable model / simulator
 - All 32bit and 64bit features of ratified User and Privilege RISC-V specs
 - Unprivileged versions 2.2, 20191213
 - Privilege versions 1.10, 1.11, 1.12
 - Vector extension, versions 0.7.1, 0.8, 0.9, 1.0
 - Bit Manipulation extension, versions 0.91, 0.92. 0.93, 1.0.0
 - Hypervisor version 0.6.1, 1.0.0
 - K-Crypto Scalar version 0.7.1, 1.0.0
 - Debug versions 0.13.2, 0.14, 1.0.0
 - P DSP/SIMD versions 0.5.2, 0.9.6
 - Zicbom, Zicbop, Zicboz, Zmmul, Zfh, Zfinx, Zce
 - Svnapot, Svpbmt, Svinval, Smstaten, Smepmp, ...
- Model source included under Apache 2.0 open source license
- Used as reference by :
 - Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, IowRISC, OpenHW Group, Andes, Valtrix, SiFive, Codasip, MIPS, Nagra/Kudelski, Silicon Labs, RISC-V Compliance Working Group, ...


Imperas is used as RISC-V Golden Reference Model

Page 37

© Imperas Software Ltd.

Imperas Model extensibility

- Separate source files and no duplication to ensure easy maintenance
- Imperas or user can develop the extension
- User extension source can be proprietary

Page 38

Imperas develops and maintains base model

- Base model implements RISC-V specification in full
- Fully configurable to select which ISA extensions
- Fully configurable to select which version of each ISA extension
 - Updated very regularly as ISA extension specification versions change
- Fully configurable for all RISC-V specification options
 - e.g. implemented optional CSRs, read only or read/write bits etc...

Imperas provides methodology to easily extend base model

- Templates to add new instructions
- Code fragments for adding functionality
- 100+ page user guide/reference manual with many examples
 - Includes example extended processor model

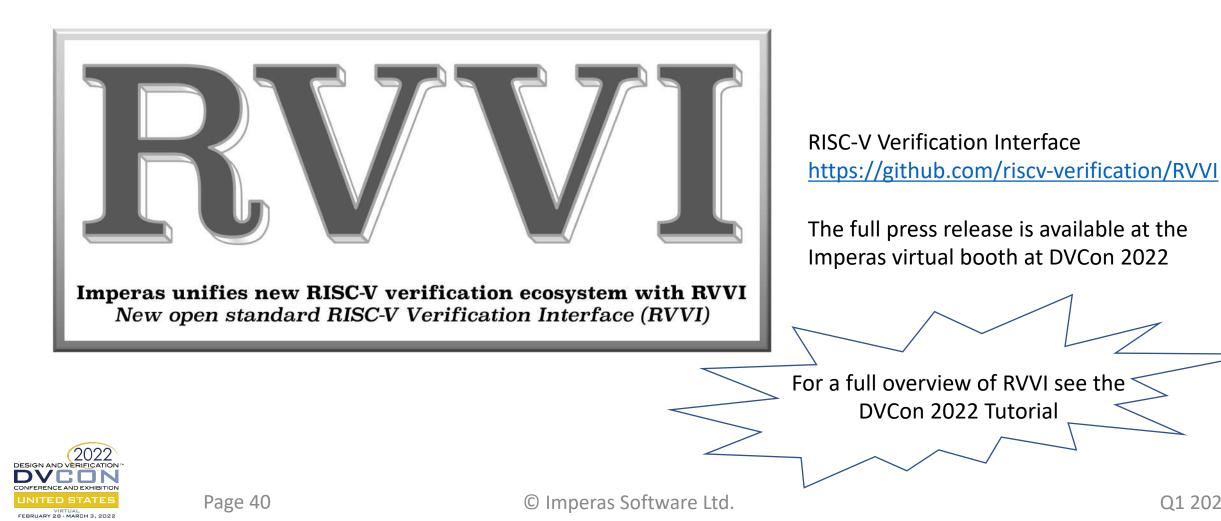
Imperas model is architected for easy extension & maintenance

© Imperas Software Ltd.

Imperas News at DVCon 2022

Imperas

The leader in simulation solutions for RISC-V


Imperas announces RISC-V Physical Memory Protection (PMP) Architectural Validation test suite for high quality security applications Imperas RISC-V Verification Solutions https://www.imperas.com/imperasdv

The full press release is available at the Imperas virtual booth at DVCon 2022

Imperas News at DVCon 2022

01 2022

Conclusions

- The open standard ISA of RISC-V offers many design freedoms
 - Many standard extensions and configuration options plus custom instructions
- The key verification requirements are to detect discrepancies with efficient debug
- The open standard RVVI offers a framework for verification reuse with support for both opensource and commercial tools
 - RISC-V Verification Interface
 - https://github.com/riscv-verification/RVVI
- Lockstep / Compare is by far the best and most efficient approach (industry 'gold standard')
 - https://www.imperas.com/imperasdv
- For more detail see the full tutorial
 - 'Introduction to the 5 levels of RISC-V Processor Verification'
 - DVCon 2022 Recording from Monday February 28th 9:00-11:00am PST

Thank You!

KevinM@imperas.com

www.imperas.com

www.imperas.com/ImperasDV

www.OVPworld.org

Imperas at DVCon 2022

- Tutorial: 'Introduction to the 5 levels of RISC-V Processor Verification'
 - Simon Davidmann and Lee Moore Imperas Software
 - Monday February 28th 9:00-11:00am PST
- Presentation: 'Introduction to RISC-V CPU design verification'
 - Kevin McDermott Imperas Software
 - Tuesday March 1st 12:30-1:00 pm PST
- Presentation: 'Imperas RISC-V Design Verification solutions'
 - Larry Lapides Imperas Software
 - Tuesday March 1st 1:00-1:30pm PST

