N
Ilperas

Impact of RISC-V Adaptability on
SoC Verification Methods

S. Davidmann, L. Moore, L. Lapides
Imperas Software Ltd.

@ embeddedworld=zo=0

ibition&Conference
It's a smarter world

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Agenda

* RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

* SoC level verification

* Summary

_
mperas

Agenda

* RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

e SoC level verification

* Summary

RISC-V Presents New m[@eras
Challenges

RISC-V is a new ISA — an open standard ISA
Managed by the non-profit RISC-V Foundation (riscv.org)

This means any designer can build a processor implementation
(Feb 2020 — there are almost 100 RTL designs including open source and proprietary)

Traditionally, processor IP ...
comes from, and is maintained by, the ISA owner

is single sourced
comes fully verified and compliant to that specific ISA

All users need to do is to verify using integration tests
There is no “standard” approach and there are few available tools for processor verification

The RISC-V industry / eco-system needs to adapt best practices for SoC verification to
processor verification

© 2020 Imperas Software Ltd. 25-Feb-20

To be more specific about the
RISC-V DV Problem InPeras

Arm processor |P
~ 10%° verification cycles per processor
Verification of interface between NoC and processor
1,000s of SoC designs successfully produced

Similar stories for ARC, MIPS, Tensilica, ...

RISC-V IP

How well verified is an individual processor (from processor IP vendor, open source, self-built)?
How to verify processor subsystems, especially for Al/ML architectures?

How well verified is interface between NoC and processor?

How to deal with custom instructions?

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Agenda

e RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

e SoC level verification

* Summary

Compliance Testing Innperas

The device works within the envelope of the agreed specifications
Have you read and understood the specification

Testing of the instructions should

Attempt to use all registers as source and destination (not combinations)
Attempt to operate on all bits which compose the immediate values (1 / 0)

Capture a signature in memory region indicating the test result
Based upon a particular hardware configuration

Compare the signature against a known good reference
Static (pre defined signature extraction)
Dynamic (runtime generation from YAML configured reference)

© 2020 Imperas Software Ltd. 25-Feb-20

Compliance Testing (2) Innperas

Testing of the instructions should NOT

Attempt to stress all possible aspects of functional verification, eg
All possible combinations of instruction parameters (2-in, 1-out = 32,768)
All possible data values

Attempt to expose possible micro-architectural aspects
Attempt to exercise behaviour which generates an exception

lllegal instructions (unsupported extensions)
(*) Do not test for missing M instructions in context of RV32|

lllegal conditions (misaligned fetch, load, store)

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Compliance Testing (3)

* Test Qualification

* Functional Coverage analysis

* Mutation Fault Simulation - Testing analysis (Imperas work in progress)

* Provides Decode Coverage
* Sees if observe changes on all bits of legal decodes

Compliance Testing (4) Innperas

Test Qualification

Functional Coverage analysis

Mutation Fault Simulation - Testing analysis (Imperas work in progress)

Provides Decode Coverage
Sees if observe changes on all bits of legal decodes

Verified against RV32] test suite

48 hand coded directed tests (average 150 instructions each)

https://github.com/riscv/riscv-compliance/tree/master/riscv-test-suite/rv32i/src

Decode Coverage data from the Imperas tool
ran 478,390 simulations in 308 secs

© 2020 Imperas Software Ltd. 25-Feb-20

Compliance Testing (5) Innperas

Compliance RV32l Base Instruction Testing
November/12/2019 — 48 tests

Compliance RV64V Vector instruction Testing (Imperas work in progress)
February/2020 — ~6,000 tests

RISCV-V compliance suites are still a work in progress

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Agenda

* RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

e SoC level verification

* Summary

Page 12 © 2020 Imperas Software Ltd. 25-Feb-20

Key Issue — Reference
Comparison

One thing compliance, directed, random have in common...
Is a need for a reference implementation to compare with

So why do | need a reference as part of my verification ?
Comparison for the observed behavior
Covering all possible aspects of the ISA envelope

And — it needs to represent your exact design and architecture:
XLEN
Vectors: VLEN, SLEN, ELEN, (version: 0.7.1, 0.8, 0.9 Draft, ...)
Bit Manipulation (version: 0.9, 0.91, 0.92, ...)
Custom Extensions
M+U (No S)
Hardware LSU Misalignment Support (no exception)
CSR: MTVEC ReadOnly

© 2020 Imperas Software Ltd.

Imperas

25-Feb-20

RISC-V Reference Choices nnperas

") ('30 [[——

240 ATy

RISC-V is highly configurable N
o r
So it can get a little complicated ! @ o3 VR i‘)
. "’ ‘\‘

60 Questions ? ® 3

=P Al 3
000— 00 N / /)

’(@ 2\

—

© 2020 Imperas Software Ltd. 25-Feb-20

riscvOVPsim as the Reference
Model for Compliance Testing Innperas

Industrial quality, free ISS / reference model for
compliance testing
GitHub.com/riscv/riscv-compliance

O—V]) Imperas GitHUb-Com/riSCV/riscv—bitmanip

i GPU model Model is built using Open Virtual Platforms (OVP) APlIs

] Implements full RISC-V envelope
Configurable for all features and version

= Includes full open source Apache 2.0 model
> riscvOVPsim y } D .o pe .
<cross>.elf Bud (cpu+memory) i Kept up to date for specification changes
s L = Works ‘out of the box” with full tracing, debug, and
Semiliasiad many other options
Filel/O
e Video: http://www.imperas.com/riscvovpsim-a-complete-risc-v-
Imperas riscvOVPsim Compliance Simulator iss-for-bare-metal-software-development-and-specification-
compliance

Has some limitations which make it not appropriate as a
reference model for RTL design verification (DV)

© 2020 Imperas Software Ltd. 25-Feb-20

http://www.imperas.com/riscvovpsim-a-complete-risc-v-iss-for-bare-metal-software-development-and-specification-compliance

Additional Capabilities Needed im@eras

for a DV Reference Model

* Support for multi-hart processors

* Support for custom instructions

* Support for injection of external / asynchronous events
* Support for step-and-compare DV flow

Page 16 © 2020 Imperas Software Ltd. 25-Feb-20

OVP RISC-V Model and
Imperas Simulator as Reference 1lnP€ras

Support for multi-hart processors

mperas

Support for custom instructions

Support for injection of external / asynchronous events
RISC-V

Reference Support for step-and-compare DV flow

Model &
Simulator

Used as golden reference in RISC-V Foundations’
Compliance Suite and Bit Manipulation group

http://www.imperas.com/riscv

In use as reference with customers for RTL DV

© 2020 Imperas Software Ltd. 25-Feb-20

http://www.imperas.com/riscv

Flow to add new custom

Instructions

Characterize C Application
e Instruction Accurate Simulation
e Trace / Debug
e Timing Simulation
e Function Timing / Profiling

Develop New
Custom Instructions
e Design Instructions
e Add to Application
e Add to Model
e Add Timing

_
mperas

Characterize New
Instructions in Application

e |[nstruction Accurate Simulation
* Trace / Debug

e Timing Simulation

e Function Timing / Profiling

e Check RISC-V Compliance

e Use as reference for RTL Design Verification

e Use in Imperas/OVP Platforms, EPKs
* Heterogeneous / Homogeneous
e Multi-core, Many-core

e Imperas Multi-Processor Debug, VAP tools

e Port OS, RTOS (Linux, FreeRTOS...)

e Use in many simulation envs (inc. SystemC)

e Deliver to end users

Page 18

© 2020 Imperas Software Ltd.

 —

\

Optimize & Document model

e [nstruction Coverage
e Line Coverage

¢ |nstruction Performance
e Generate PDF model doc

25-Feb-20

_
mperas

Agenda

e RISC-V verification issues
* Compliance is not verification
* Reference models and custom instructions

* Processor IP verification

* Step and compare methodology
* Directed tests

* Instruction stream generation

* Test generation and execution

e SoC level verification
* Summary

Page 19 © 2020 Imperas Software Ltd. 25-Feb-20

DV Methodology: Step and
Compare vs Trace/Signature Innperas

Compare

Short answer: bottom line is DV resources used

With trace / sighature comparison, failures are not known until after the
simulation has completed; this can be a long time for a complex test, and
therefore could waste simulation resources

Step and compare enables failures to be flagged and the simulation stopped
when the failure occurs

© 2020 Imperas Software Ltd. 25-Feb-20

Step and Compare Requires
Encapsulation of the Reference in
SystemVerilog &

memRead() memWrite() step()

R

Imperas

busReadCB() busWriteCB() step()

OVP RISC-V CPU model object

SystemVerilog module

The OVP model is a binary shared object of a RISC-V CPU model

Encapsulated into a SystemVerilog module, using SystemVerilog DPI
Interfaces being: reset, step, address bus, data bus, interrupts, etc.,...

Instanced in SystemVerilog design or testbench like any module

© 2020 Imperas Software Ltd. 25-Feb-20

_
Imperas

Step and Compare Flow

SystemVerilog Testbench

DUT DUT: RISC-V RTL
(cpu) Control
memory
Step —
SystemVerilog module &
Compare

memory OVP model results.log

RISCV.S RISCV.elf (cpu)

* Testbench loads .elf program into both memories, resets CPUs (RTL and OVP model)

* Steps CPUs (DUT and reference), extracting data, and comparing

* There is no stored log file — test log data is dynamic and requires two targets to be run and
compared

© 2020 Imperas Software Ltd. 25-Feb-20

Directed Testing Innperas

Test Encoded Self Checking
Tests are written with expected behaviour encoded
Tests can introspect the state and (self) diagnose faults

Reference Comparison Checking
Tests are written without predicting the result
A reference is consulted for the correct value

// Device Under Test // Reference

int a = 4; int b = 5; int Ra = 4; int Rb = 5;
int ¢ = a + b; int Rc = Ra + Rb;
assert(c == Rc) // external (@runtime or post-processed)

© 2020 Imperas Software Ltd. 25-Feb-20

ettt bbereie

Pk bbb bbb bk

.

e tek

Class Type |Coverage

= 2 Mscv_inst_pkg/nscv_instr_cover_group

fiscy_instr_co,
fiscv_insy_co..
fiscy_instr_co.
riscv_instr_co.
fiscv_instr_co...
fiscv_instr_co...
fiscv_instr_co.
nscv_instr_co.
niscv_instr_co...
riscy_instr_co
Ascy, msv_cn..

* Cov SIgroups -

'] Name
= lnscv instr_pkgiriscv_instr_cover_group

=2 TYPE add_cg

+ 4 CVP add_cg:cp_rsl

;-2 CVP add_cg:cp_rs2

;4 CVPadd_cg:cp_rd

;-2 CVP add_cg:icp_rsl_sign

+) 4l CVP add_cg:cp_rs2_sign
-4 CVP add_cg:cp_rd_sign
;- CVPadd_cg:cp_gpr_harzard
4 CROSS add_cg:cp_sign_cross
TYPE sub_cg

TYPE addi_cg

TYPE lul_cg

TYPE auipc_cg

TYPE sra_cg

“d

ol e B () -
|8 9§ 4§ Qe e g

_;jTWEand _cg

+} 4 TYPE xori_cg
+ 4 TYPEori_cg

100.00%

100.00%

96.55%

100.00%
100,00%
100.00%

0.00%
100.00%
100.00%

100 00% I v

Included (Merge_instances

Coverage

100.00%
100.00%
100.00%
100.00%
100.00%

100.00%

100.00%
100.00%
100.00%
100.00%

09.55%

100.00%
100.00%
100.00%

0.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%:
100.00%

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

% of Goal |Status

Get_inst_coverage

100.00% N v
100.00% I v
100.00% I v
100.00% I
100.00% I v*
100.00% I v
100.00% I v
100.00% N v
100.00% I v
100.00% [v
99.55%) v
0.00%] v

0% (] v
100.00% (N v
100.00% I v
100.00% [
GG —
100.00% I v
100.00% [
100.00% I v
100.00% NG
100.00% N v
100.00% | v
100.00% (GG v

Inciuded

R O)

Th bk

Key Issue for Directed Testing:
Coverage

¥ Name

= M hiscv_insyr_pkgiriscy_instr_cover_group
= o TYPEadd_cg

A CVPaad_cg:cp_rsl
A CVPadd_cgicp_rs2
A CVPadd_cg:cp_rd

Witk @@k

) bin auto[POSITIVE]

) bin auto]NEGATIVE]

M CVPadd_cg:cp_rsi_sign
4 CVP add_cgicp_rs2_sign
2 CVP add_cg:cp_rd_sign

= M CVPadd_cg:cp_gpr_harzard
5] bin auto[NO_HAZARD]
8] bin auto[RAW._HAZARD!
B) bin auto[WAHSERSL HOTh

CROSS add_cg
8] bin <auto[PO
8] bin <auto|NE
8] bin <auto[PO
8) bin <aulo|NE
B) bin <autofPO
8] bin <auto[NE
8] bin <autb[PO
2] bin <auto|NE

TYPE sub_cg

TYPE addi_cg

TYPE lui_cg

TYPE auipe_cg

TYPE sra_cg

TWEsil_cg

TWEsl cg

TYE srai ca

auto(1

auto(i
auto(1
auto(1
auto(l
auto(l
auto(1
auto(1
auto(1
auto(1
auto(l
auto(1

B] bin auto]WAVy| Name

=) M mscv_instr_pkgiriscy_instr_cover_group
=) 4 TYPEadd cg

+ M CVPadd_cg:cp_rsl
+ 4 CVPadd_cg:cp_ts2
= 8 CVPadd_cg:cp_rd

B) bin autoZERO]

B) bin auto[RA]

8] bin auto[SP}

B) bin auto[GP]
8) bin auto[TP]
8] bin auto[T0]
8] bin auto[T1]
8) bin auto[T2]
8] bin auto[S0)
8] bin auto[S1]
B) bin auto[A0]
B8] bin autofAl]
8) bin autolA2]
B] bin auto[A3]
B8] bin auto[A4]
8] bin auto]A5]
B) bin autofA6]
8] bin auto[A7]
8) bin auto[S2]
8] bin auto[S3)
B) bin auto[S4]
8] bin autofS5]
B) bin auto[S6)
B) bin auto[S7]
B) bin auto[S8]
8] bin auto[S9]
B) bin autofS10]
B) bin auto[S11)
8] bin auto[T3]

© 2020 Imperas Software Ltd.

ClassType Coverage Goal

fiscv_instr_co.
nscv_instr_co.

risev_instr_co...
risev_instr_co...
riscv_instr_co..,
fiscv_insy_co...
fiscv_instr_co...

riscv_instr_co...

Included Merge_instances

|Class Type Coverage

100.00%
100 00%
100.00%
100.00%
320
313
315
407
453
345
389
423
403
409
483
352
37
396
352
412
358
387
429

% of Goal |Status

Ilperas

auto(l)

100.00% [v
100 00% [v
100.00% I v
100.00% [v
100.00% [v
100.00% I v
100.00% N v
100,00+ N v
100.00% [v
100 00% I v
100.00% N v
100.00% N v
100.00% N v
100.00% [N v*
100.00% NN v
100.00% I v
100 00% I v
100.00% I v*
100.00% (NN v
100 00% (N v
100.00% [v
100.00% I v
100.00% (I v
100.00% [v
10000% I v
100.00% [v
100.00% I v
100.00% I v
100 00% N v
100.00% N v
100 co\»—(
100.00%
100.00% _l
100.00% [v
100.00% [v
100.00% I v
100.00% I v
100,00% I v

Coverage images from Mentor Questa SystemVerilog UVM %Ialﬁre b_20

Gel_inst_cove

Included Merge_instance

Instruction Stream Generation llPETraAS

Instruction stream generation (ISG) generates random streams of instructions

Generator given guidance to target specific instruction types and values
Many constraints required to get legal instruction sequences

No predicted results, relies upon reference

This is just constrained random generation repurposed to processor DV
Constrained random generation is a well-established part of SoC DV flows

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Google RISC-V Instruction
Stream Generation

* High quality SystemVerilog UVM DV infrastructure
* Open source (Apache 2.0)

* Drives a RISC-V core through corner cases and pushes it Open source

SystemVerilog

to the limit UM
* Requires reference and DUT to generate instruction RISC-V
trace disassembly instruction

Stream
* Traces compared as post-process (neutral CSV format) Generator

* Can compare values and program flow
- https://github.com/google/riscv-dv
* dependant upon target capability

* Provides coverage for test quality, and to aid guidance

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Constrained Random Testing

- = o
D GOOg|€ Cloud RTL Simulation Metrics.log
Open Source RISC-V RTL Open Source
: SystemVerilog
SystemVerilog & memory

UvMm
UVM RISC-V Functional

RISC-V COVEISEE
Instruction R | dd
Srraam (cpu+memory) mperas a

RISCV.S RISCV.elf

Generator Vectors (~500)

Imperas Imperas.log Bitmanip (~100)

* Google: open source riscv-dv instruction stream generator

* Metrics : SystemVerilog design + UVM simulator for RTL Wﬁﬂﬂ@eras
* Now working with Cadence, Mentor, Synopsys RTL simulators » Imperas have added Vector and
_ _ Imperas ded .
* Imperas: model and simulation golden reference of RISC-V A e
CPU

(not yet publicly released)

© 2020 Imperas Software Ltd. 25-Feb-20

-
Case Study: lowRISC lbex IMoeras

debug_req |

> Decoder m%-
A -

Controller

Instruction Mem

Data Mem

A&
eddr o of
| csR PLLSU%:..W..O 5
TLA A rdeta | 32

* lbex is a small 32 bit RISC-V CPU core (RV32IMC/EMC) with a two stage
pipeline, previously known as zero-risky (PULP)

* https://github.com/lowRISC/ibex
© 2020 Imperas Software Ltd. 25-Feb-20

https://github.com/lowRISC/ibex

_
mperas

Case study : Ibex core verification

lllegal/hint instruct...

ol Debug mode
31.3%

Others

6.3%

Pipeline issue

6.3% Memory access fault
12.5%
Interrupt
18.8%
) Google Cloud Categories of found bugs

Bugs Found Using ISG

Approach

Store —_

E T

page fault handling

£ Google Cloud

9 8

Wr rd
SSTATUS | [T .

MSTATUS [[mx |
privieged CSRaccess FENCE operationfailure
o . — ||| S Q
| Load | Branch Add .. | Mult _,| MULHSU | —
(X
Incorrect branch execution ~ ALUcorner case bug

© 2020 Imperas Software Ltd.

_
mperas

25-Feb-20

.
Valtrix Builds Executable Test imperas

B e n C h es , (T) Build STING @ Run on simulator

|mage

|l
{ J

Collect reference

* Imperas working with Valtrix

* riscvOVPsim as reference model

* Alternative/complementary %ﬁ"éfnr?f,?l,'éti‘ngv
approach to Instruction Stream =
Generator randon {b Tt Resuts | ¢ Teeteni

Parse the reference

o results into a CPP data
S structure

@ Rebuild the same

test with reference @ Run on DUT with COSIM checking enabled
test results and \/

COSIM checking
enabled -
DUT
[
|]

Page 31 © 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Agenda

* RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

* SoC level verification

* Summary

Page 32 © 2020 Imperas Software Ltd. 25-Feb-20

SoC Level Verification Innperas

What about ...

Verification of processing elements with multiple RISC-V cores, as is common
in Al/ML SoCs?

This flow is still evolving / being invented

Verification of the interface between the processor or processing element and
the NoC

Simple answer is that NoC verification IP is used
This takes some effort, which is taken for granted with traditional processors

© 2020 Imperas Software Ltd. 25-Feb-20

_
mperas

Agenda

* RISC-V verification issues

* Compliance is not verification

* Reference models and custom instructions
* Processor IP verification

e SoC level verification

* Summary

Page 34 © 2020 Imperas Software Ltd. 25-Feb-20

Summary Innperas

DV is a critical issue for RISC-V processor IP and SoCs
Compliance testing is a subset of DV
Reference models are needed, and are now available

Directed testing, instruction stream generation and test generation/execution
are being used for processor IP DV

Step and compare methodology provides the most efficient DV flows

More work is needed

© 2020 Imperas Software Ltd. 25-Feb-20

N
Ilperas

Thank you

Larry Lapides

LarryL@imperas.com

Page 36 © 2020 Imperas Software Ltd. 25-Feb-20

