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Abstract – The use of Asymmetric MultiProcessor (AMP) 

architectures is now widespread.  Two common implementations 
are Linux running on one core of a dual-core ARM Cortex-A9, 
with an RTOS running on the other, and SMP Linux running on 
the dual-core ARM Cortex-A9 and an RTOS or bare metal 
application running on another processor core, such as an Altera 
NIOS II. The reliability of such a system is highly dependent on the 
correct functioning of inter-core interaction with shared resources, 
which is often hard to verify.  Similar issues with reliability and 
verification are encountered when extending such a system to 
include security, such as utilizing the ARM TrustZone instructions.   
 

Many embedded software verification issues limitations are 
related to the lack of visibility and controllability inherent in the 
use of hardware platforms for software testing.  Moreover, without 
this visibility and controllability the hardware-based analytical 
tools require the instrumentation of the source code or the use of a 
special “debug” compiled version of the OS, which by their very 
nature perturb the system and reduce the validity of the analysis 
results.  Virtual platforms (software simulation) provide a test 
vehicle which, with the right methodology and tools, can provide 
the visibility and controllability needed for comprehensive testing 
of embedded software on AMP systems.   
 

This paper will detail the methodology used to bring up such 
an AMP system on a virtual platform.  The first step is the 
construction of the instruction accurate virtual platform for the two 
AMP systems.  The Open Virtual Platforms APIs for model and 
platform development are used in building the virtual platforms 
used in this paper.  These virtual platforms are variants of the 
Altera SoC FPGA Cyclone V product.  The second step in the 
process involves the use of CPU- and OS-aware analysis tools to 
help with initial system bring up.  Rather than providing only 
instruction trace data, these tools enable the analysis of the system 
at the appropriate level of abstraction for the software engineer:  C 
source code for firmware and drivers and the OS task/event level 
for operating systems.  In addition, the tools are non-intrusive, 
requiring no instrumentation or modification of the application or 
OS, thus validating the results of the analysis.   
 

Finally, the third step is the development of a robust test 
environment, including the use of non-intrusive, intelligent memory 
access monitors, built upon the CPU- and OS- aware simulation 
environment to ensure that different OS operations do not access 
forbidden memory segments.   
 

 
A detailed case study illustrating how complex faults have been 

found in an Altera Cyclone V AMP system, by using this 
methodology, will be shown.   
 
Keywords – Virtual platform, AMP, memory monitor, OS-aware, 
software tools 

 

I. INTRODUCTION 

As embedded systems have become more complex, 
different operational architectures have evolved, having to do 
with the multiple processors available in a single silicon device 
and systems of multiple silicon devices.  These silicon devices, 
because of the increasing complexity and multiple processors, 
have become known as Systems on Chip (SoCs).  The multiple 
processors on a given SoC can be fully homogenous, or 
heterogeneous.  Combined with the different processors are 
different operating systems, either Symmetric MultiProcessor 
(SMP) or Asymmetric MultiProcessor (AMP) [1].  The 
combinations of processor and operating system are shown in 
Table 1.   

 
Table 1.  Different multiprocessor operating architectures for 

embedded systems. 
 Homogeneous 

Processors 
Heterogeneous 

Processors 
Symmetric 

MultiProcessor 
Homogeneous SMP Not done in practice 

Asymmetric 
MultiProcessor 

Homogeneous AMP Heterogeneous AMP 

 

In SMP systems, a single operating systems (OS) runs on all 
the cores.  This OS manages all the resources, making it appear 
to the user that there is just one core.  Most of the complexity is 
hidden from the user.  This ease of use is nice, but the 
performance advantages of having multiple cores are more 
difficult to achieve.   
 

In AMP systems, different OSs run on different cores.  For 
example, Linux could run on one core, and a Real Time 
Operating System (RTOS) on another core, enabling the user to 



employ the optimal OS for different tasks.  Parallelization of 
applications is easier, resulting in better performance gains.  
However, the user needs to manage the resources, so this is not 
as easy to implement in practice.  AMP systems also are used 
with multiple, heterogeneous cores so that not only is the OS 
optimized, but the OS-processor core combination is optimized 
for different tasks.   
 

For a SMP system, the user just needs to port and bring up 
the SMP OS on the SoC.  This is not a trivial task, however, 
with the Linux community there is a lot of help available.  For 
an AMP system, multiple OSs need to be ported and brought up 
on the SoC, at least one of which will be a RTOS.  Also, since 
the user has to manage the resources and communication, there 
is more opportunity for problems to arise.  A well thought out 
methodology is necessary to ensure that the AMP system will 
work as designed.   
 

In this paper the process for bring up of an AMP system is 
described.  The methodology is based on the use of virtual 
platform technology, starting with the initial development of the 
virtual platform and bring up of Linux on a single core and 
finishing with bring up of the full AMP system.  The steps are 
described, showing how operating system (OS) aware tools and 
customized memory access monitors can play a significant role 
in easing the bring up process, reducing schedule and achieving 
higher quality software.  The current hardware-based software 
development flow is first discussed, followed by a general 
discussion of virtual platform technology, before describing the 
AMP bring up methodology.   
 

II. LIMITATIONS OF HARDWARE-BASED SOFTWARE 

DEVELOPMENT, DEBUG AND TEST 

The standard methodology for embedded software 
development is to use some type of hardware as the 
development platform.  This could be a previous generation of 
the SoC, a hardware emulator, a FPGA prototype, or some other 
type of development board.  These platforms have the benefit of 
cycle accurate execution of the software, which is needed for 
some software development.  However, the requirement for 
cycle accurate development platforms is overstated by users.   
 

While there are advantages to using a hardware-based 
development methodology, there are also disadvantages.  These 
disadvantages include 
 

 Limited physical system availability 
 Limited external test access (controllability) 
 Limited internal visibility 
 Typically 6 months or more from project start until 

hardware platform is available to software 
engineering team 

 
To get around these limitations, the software is typically 

modified for debug purposes.  This takes the form, for example, 
of adding printf and printk commands, using debug versions of 

the OS kernels, and adding instrumentation to the source code in 
order to use analytical tools.  In all these cases the software is 
modified, and the perturbed software will almost certainly not 
have the same behavior as the clean source code.  This results in 
additional difficulties in debug, and puts the validity of 
analytical results in doubt.   
 

III. SOFTWARE SIMULATION (VIRTUAL PLATFORM) 

ADVANTAGES 

Instruction accurate virtual platforms, which are just 
software simulation environments, are not cycle or timing 
accurate.  However, these virtual platforms do have significant 
advantages:   
 

 Earlier system availability 
 Full controllability of platform both from external 

ports and internal nodes 
 Full visibility into platform 
 Performance can be faster than real time 
 Easy to replicate platform and test environment to 

support regression testing on compute farms 
 

Looking at the complete software development 
methodology, virtual platforms should be used exclusively early 
in the development process.  However, the virtual platforms, due 
to the visibility and controllability and the software development 
tools available, can continue to be used and add value 
throughout the duration of the software project.  The hardware 
platforms, including the final hardware, can be used when they 
become available, with hardware based testing and virtual 
platform based testing providing complementary benefits to 
software engineers.   
 

Before going further, some additional understanding of the 
details of a virtual platform is needed.   
 

Begin with an example of the software architecture to run 
on a SoC, in this case for picture in picture video (Figure 1).  
This architecture is then translated via manual engineering effort 
into the hardware implementation.  Conceptually, the hardware 
implementation can then be translated into high level models of 
the hardware components, including the various processors 
(Figure 2).  In practice, once the high level hardware 
implementation is architected, the virtual platform models are 
usually developed well ahead of the detailed hardware 
implementation.  As with Intellectual Property (IP) models for 
hardware design, high level models of standard components 
should be readily available from existing libraries.  

 
For instruction accurate virtual platforms, the models should 

have only as much information in the models as the software 
developers need.  There is no timing information needed in these 
models, and any unnecessary information will slow the virtual 
platform performance.  The processor models can be thought of 
as similar to instruction set simulators.  However, for virtual 
platforms, the ideal is to have a single simulator for both the 
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processors and the peripheral and behavioral components, and 
not a difficult-to-use and low performing co-simulation of 
processors and other components.  Architecturally, this means 
that the models are separate from the simulator engine.  While 
this is advantageous from a performance and ease-of-use 
perspective, it also enables software tools to be easily and 
efficiently added into the simulation environment.   
 

One last key point about virtual platforms is that the 
combination of virtual platform models plus simulator executes 
exactly the same binary software stack as will eventually run on 
the hardware.  No compiling for the host x86 workstation; if the 
system uses an ARM processor, the same cross compilation tool 
chain and flow are used to create the ARM binary executables to 
run on the virtual platform or the hardware.   
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Figure 2.  Hardware implementation of picture in picture video system, also 
showing the software stack that would run on the SoC.  The virtual platform 
implementation of this system looks exactly the same conceptually, but is 
composed of high level, instruction accurate models of the hardware.   

 

IV. CASE STUDY:  OS PORTING, BRING UP AND 

VERIFICATION ON ALTERA CYCLONE V SOC FPGA 

 

A. Altera Cyclone V Device 

The Altera Cyclone V SoC FPGA [2] was used because of 
its power and versatility.  This device combines the power of an 
ARM-based SoC with the versatility of a FPGA.  Key features 
of the Cyclone V include a dual core ARM Cortex-A9 processor 
(Cortex-A9MPx2), a rich set of peripheral components in the 
Hard Processor System (HPS) including ethernet, USB, I2C, and 
more, and a large amount of FPGA fabric that the user can 
utilize for custom functionality.  Altera offers a number of 
components as IP for the fabric, including the Nios II processor 
core.  A block diagram of the Cyclone V HPS is shown in 
Figure 3.   

 
One of the advantages of the Cortex-A9MPx2 is that it can 

be configured to run in either SMP or AMP modes.  Also, for 
AMP operation, the Cortex-A9MPx2 can be running in SMP 
mode, and one or more Nios II processor cores can be added to 
the fabric for heterogeneous AMP operation.  Both scenarios are 
discussed below.   

 

B. Open Virtual Platforms Models and Modeling APIs 

Open Virtual Platforms (OVP) [3] models and modeling 
APIs were used to build the virtual platform of the Cyclone V 
because of the availability of the processor core models in the 
OVP library, the performance of the processor core models, the 
ease of use of model development with the APIs and the tool 
power that is enabled when running the platform with the 
Imperas simulators.   
 

OVP includes a library of models, APIs for developing 
models and platforms and a reference simulator (OVPsim) for 
executing those virtual platforms.  The model library includes 
over 125 different processor core models, plus over 100 
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Figure 1.  Software architecture of picture-in-picture video application software 



Figure 3.  Cyclone V SoC FPGA Hard Processor System 

 
different peripheral models, and a variety of example virtual 
platforms.  While most of the models available from the OVP 
website have been developed by Imperas, other users have 
contributed models to the library.  Most models are available as 
both binary and source, with distribution governed by a 
modified Apache 2.0 open source license.   

 

C. Linux Boot on Single Core ARM Cortex-A9 

The first step OS porting and bring up was to boot Linux on 
a virtual platform containing only a single core ARM Cortex-A9 
model.  One of the advantages of using a virtual platform for 
software development is that the virtual platform in total, as well 
as the individual models, do not need to be complete.  By this it 
is meant that the virtual platform does not need to include 
models of all the components on the hardware device, and some 
of the component models may only include a portion of the 
functionality or may only include the top level registers.   
 

This methodology was used to create the initial Cyclone V 
virtual platform, shown in Figure 4.  Table 2 lists the 
components in the virtual platform, and the degree of accuracy 
or completeness of the model.   
 

Table 2.  Virtual platform component models. 
Model Model Development Completeness 

ARM Cortex-A9 OVP Library item Complete functional model 
DMA OVP APIs Registers only 

Ethernet OVP APIs Registers only 
Imperas SmartLoader OVP APIs Complete functional model 

SRAM OVP APIs Complete functional model 
System Manager OVP APIs Registers only 

Timers OVP APIs Complete functional model 
UART OVP APIs Complete functional model 

 
Development of the individual models and construction of 

the virtual platform from the newly developed models and from  

 
models from the OVP library took about 2 weeks of effort to 
achieve a Linux prompt.  Linux version 3.4 from Altera was 
used for single core Linux.  Default configurations were used.  
The device tree was modified to comment out peripherals that 
were not included in the virtual platform, as those peripherals 
were not critical to the booting and testing of Linux.  The time to 
Linux prompt, the “virtual platform boot time”, is under 5 
seconds for this virtual platform running on a standard x86 
Windows or Linux host machine.   
 

 
 

Figure 4.  Virtual platform of the Altera Cyclone V used to boot Linux 
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Once Linux was booting on the virtual platform, a suite of 
tests was run to validate Linux behavior on the platform.  In the 
course of running this suite of tests, a bug was found in the 
Linux kernel preemptive scheduling:  Linux did not switch 
correctly between multiple tasks, corresponding to multiple 
applications, running in the Linux OS.  OS-aware tracing tools 
were used to find the bug, which involved reading from the 
incorrect register in one of the timers.  Once the bug was 
observed, finding and fixing the bug took only hours.   

 

D. Software Development, Debug and Test Tools 

Virtual platforms offer the advantages of controllability and 
visibility, but what tools are available to enable the realization of 
these advantages?  Using the Imperas virtual platform 
environment, a suite of tools is available for use, plus users can 
define custom tools.  These tools use the binary interception 
capability built into the Just In Time (JIT) code morphing [4] 
simulation engine.  Binary interception works by intercepting 
the processor instructions before execution by the JIT engine.  
Additional code may be added to the instruction for analytical 
purposes, and then the combined instruction is processed by the 
JIT engine.  The original processor instruction is still executed, 
unchanged, but now the additional analysis instruction is also 
executed.  One advantage over other virtual platform based 
analysis techniques is that by using the JIT engine, the 
performance overhead for any analysis tools is minimized, 
typically achieving less than 10% [5].    
 

Using binary interception for building software analysis 
tools results in enabling analysis without modifying the software 
– OS, firmware, driver, application – source code, a significant 
advantage over hardware based software development 
environments.  In these environments, source code must be 
instrumented and recompiled, such as for gcov and gprof, or a 

debug version of the kernel must be used, or printf or printk 
instructions are liberally sprinkled through the source code to 
enable debug.  These actions change the behavior of the 
software, and as a result the bugs found and fixed in this 
scenario are not necessarily what the user was trying to find.   
 

A C language API [6] has been developed which enables 
tool builders and end users to take advantage of the binary 
interception capability.  “Intercept libraries” are compiled for the 
host machine, and then added in to the simulation environment.  
CPU- and OS-aware tools have been built which raise the 
abstraction level for analysis.  As a simple illustration of the 
value of these tools, debugging Linux bring up with instruction 
tracing would require sifting through about 700,000,000 
instructions before the boot prompt was observed.  However, OS 
task tracing reduces this to the approximately 700 tasks that are 
executed as Linux boots.  This makes it much easier to narrow 
down the cause of any problem.  Figure 5 shows a screen shot of 
OS-aware tracing of task, execve and scheduler as Linux boots.   

 

E. SMP Linux Boot on Dual Core ARM Cortex-A9 

Once Linux was booting on the single core virtual platform, 
the single core ARM processor model was replaced by the 
model of the dual core Cortex-A9.  Another UART was added to 
the virtual platform for the second core, and an L2 Cache 
Controller model with only the necessary functionality was also 
added.  Then SMP Linux was executed on the virtual platform.  
Linux version 3.6 from Altera was used.  There were no 
problems bringing up SMP Linux on the virtual platform.   

 
 
 
 

 

 
Figure 5.  OS-aware tracing tool output. 



F. RTOS Boot on Single Core ARM Cortex-A9 

The third step in the process was to bring up the RTOS on a 
single core ARM Cortex-A9 platform.  This just reused the 
initial platform used in the first step for single core Linux bring 
up.  The RTOS used was the Altera release of the Micrium 
µC/OS-II [7] RTOS.   
 

When running example applications under the RTOS, 
incorrect behavior was observed.  Again using the OS-aware 
tools, this time tuned for µC/OS-II, bugs were discovered in the 
global interrupt controller (GIC) register accesses.  These were 
easy to find using the tools; in contrast the bugs had not been 
observed when bringing up the RTOS on hardware.  The easy-
to-fix bugs were 

 
 Accessing ICDICER 1 to 8 when only 0 to 7 exist  
 Accessing ICDIPTR 08 to 63 when only 00 to 55 

exist 
 

G. AMP Boot on Dual Core ARM Cortex-A9 

The fourth step was to bring up an AMP system involving 
just the dual core ARM Cortex-A9.  In this case, Linux would 
run on one core, and µC/OS-II on the other core.  This is not too 
different from each operating system running on a single core.  
However, the operating characteristics are more complicated, 
including the requirement to ensure that each operating system 
does not access memory that is dedicated to the other operating 
system.   
 

For this step, the virtual platform needed to be modified to 
add the Altera Reset Manager component.  Only the minimal 
functionality needed to handle the reset prior to each OS booting 
was required for the model.  All other components remained the 
same.  Also, the Linux and µC/OS-II OS-aware tools were used 
in the simulation environment.  The additional tool added to the 
simulation environment at this step was a custom memory 
access monitor.   
 

This custom memory access monitor used the binary 
interception API to define which memory regions could be 
accesses by which of the operating systems.  This took the form 
of a table written in C:   

 
// 
// Define watch areas for memory and peripherals defined in the 
platform 
// 
memWatchT amcWatch[] = { 

//  name                      watchLow   watchHigh allowedCPUs 
    { "Linux memory",    0,           0x2fffffff,  LINUX_CPU   }, 
    { "uCOS memory",   0x30000000, 0x31ffffff,  UCOSII_CPU  }, 
    { "gmac0",                0xff700000, 0xff700fff,  LINUX_CPU   }, 
    { "emac0_dma",    0xff701000,  0xff701fff,  LINUX_CPU   }, 
    { "gmac1",                0xff702000,  0xff702fff,  LINUX_CPU   }, 
    { "emac1_dma",      0xff703000,  0xff703fff,  LINUX_CPU   }, 
    { "uart0",                  0xffc02000,  0xffc02fff,  LINUX_CPU   }, 
    { "uart1",                  0xffc03000,  0xffc03fff,  UCOSII_CPU  }, 
    { "CLKMGR",           0xffd04000,  0xffd04fff,  LINUX_CPU   }, 
    { "RSTMGR",           0xffd05000,  0xffd05fff,  LINUX_CPU   }, 
    { "SYSMGR",           0xffd08000,  0xffd08fff,  LINUX_CPU   }, 
    { "GIC",                   0xfffec000,  0xfffedfff,  LINUX_CPU   }, 
    { "L2",                       0xfffef000,  0xfffeffff,  LINUX_CPU   }, 
    { 0 } /* Marks end of list */ 
}; 

 
In the “Allowed CPU” column, “Linux CPU” and “UCOSII 

CPU” were used instead of CPU0 and CPU1 for clarity.   
 

When the virtual platform was run, there were two results.  
First, a bug was found in the Linux accesses of the GIC 
registers.  This bug had been previously found in a hardware 
bring up of the AMP system.  Working on hardware, it took 
about 2 weeks to find and fix the bug.  In contrast, using the 
virtual platform with the OS-aware tools took only 2 days to find 
and fix the bug.   
 

The second result was from the memory access monitor, in 
the form of warnings about unallowed memory accesses.  A 
partial list of those warnings is  

 
Warning (AMPCHK_MWV) cpu_CPU0: AMP write access 
violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008 

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access 
violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c 

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access 
violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010 

Warning (AMPCHK_MRV) cpu_CPU1: AMP read access 
violation in Linux memory area. PA: 0x00000020 VA: 
0x00000020 

 
Note that both physical and virtual memory address are 

given as part of the warning message.  Using these messages, 
issues with the low level boot code were quickly fixed, resulting 
in safe operation of the AMP system.   

 

H. Linux Boot on Single Core Nios II 

For this step, a simple virtual platform with the model of the 
Altera Nios II [8] processor was used (Figure 6).  The same OS-
aware tools that were used earlier for other Linux bring up steps 
on ARM were used again for the Nios II Linux bring up, as 
these tools are not specific to the processor core.  Using this  
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process enabled quick bring up of Linux on the Nios II virtual 
platform.   
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Figure 6.  Virtual platform used for booting Linux on Nios II 

 

I. Full AMP System:  SMP Linux Boot on Dual Core ARM 
Cortex-A9 Plus Linux Boot on Nios II 

The final step was combining the SMP Linux ARM Cortex-
A9MPx2 virtual platform with the Nios II Linux virtual 
platform, and running these together.  Due to the work 
performed in the previous steps, there were no issues in this final 
step.   

 

V. SUMMARY 

As embedded systems get more complex, software testing 
becomes more critical.  Software testing on hardware systems 
has limitations in the controllability and visibility that can be 
detrimental to comprehensive testing of the software.  
Instruction accurate software simulation – virtual platforms – 
complement hardware based environments because of having 
the required controllability and visibility.  Virtual platform based 
OS-aware and custom memory access monitoring tools can 
provide both higher quality and reduced schedules for OS 
porting and bring up.  Results were shown for a virtual platform 
of a heterogeneous ARM-Nios AMP system on Altera Cyclone 
V SoC FPGA device.   
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