
embedded world Conference 2014

Customized, Intelligent Memory Access Monitoring
for Reliable Asymmetric MultiProcessor System

Development

Simon Davidmann and Larry Lapides
Imperas Software Ltd.

Oxford, United Kingdom
larryl@imperas.com

Stefano Zammattio
Altera Corporation

High Wycombe, United Kingdom

Abstract – The use of Asymmetric MultiProcessor (AMP)

architectures is now widespread. Two common implementations
are Linux running on one core of a dual-core ARM Cortex-A9,
with an RTOS running on the other, and SMP Linux running on
the dual-core ARM Cortex-A9 and an RTOS or bare metal
application running on another processor core, such as an Altera
NIOS II. The reliability of such a system is highly dependent on the
correct functioning of inter-core interaction with shared resources,
which is often hard to verify. Similar issues with reliability and
verification are encountered when extending such a system to
include security, such as utilizing the ARM TrustZone instructions.

Many embedded software verification issues limitations are
related to the lack of visibility and controllability inherent in the
use of hardware platforms for software testing. Moreover, without
this visibility and controllability the hardware-based analytical
tools require the instrumentation of the source code or the use of a
special “debug” compiled version of the OS, which by their very
nature perturb the system and reduce the validity of the analysis
results. Virtual platforms (software simulation) provide a test
vehicle which, with the right methodology and tools, can provide
the visibility and controllability needed for comprehensive testing
of embedded software on AMP systems.

This paper will detail the methodology used to bring up such
an AMP system on a virtual platform. The first step is the
construction of the instruction accurate virtual platform for the two
AMP systems. The Open Virtual Platforms APIs for model and
platform development are used in building the virtual platforms
used in this paper. These virtual platforms are variants of the
Altera SoC FPGA Cyclone V product. The second step in the
process involves the use of CPU- and OS-aware analysis tools to
help with initial system bring up. Rather than providing only
instruction trace data, these tools enable the analysis of the system
at the appropriate level of abstraction for the software engineer: C
source code for firmware and drivers and the OS task/event level
for operating systems. In addition, the tools are non-intrusive,
requiring no instrumentation or modification of the application or
OS, thus validating the results of the analysis.

Finally, the third step is the development of a robust test
environment, including the use of non-intrusive, intelligent memory
access monitors, built upon the CPU- and OS- aware simulation
environment to ensure that different OS operations do not access
forbidden memory segments.

A detailed case study illustrating how complex faults have been

found in an Altera Cyclone V AMP system, by using this
methodology, will be shown.

Keywords – Virtual platform, AMP, memory monitor, OS-aware,
software tools

I. INTRODUCTION

As embedded systems have become more complex,
different operational architectures have evolved, having to do
with the multiple processors available in a single silicon device
and systems of multiple silicon devices. These silicon devices,
because of the increasing complexity and multiple processors,
have become known as Systems on Chip (SoCs). The multiple
processors on a given SoC can be fully homogenous, or
heterogeneous. Combined with the different processors are
different operating systems, either Symmetric MultiProcessor
(SMP) or Asymmetric MultiProcessor (AMP) [1]. The
combinations of processor and operating system are shown in
Table 1.

Table 1. Different multiprocessor operating architectures for

embedded systems.
 Homogeneous

Processors
Heterogeneous

Processors
Symmetric

MultiProcessor
Homogeneous SMP Not done in practice

Asymmetric
MultiProcessor

Homogeneous AMP Heterogeneous AMP

In SMP systems, a single operating systems (OS) runs on all
the cores. This OS manages all the resources, making it appear
to the user that there is just one core. Most of the complexity is
hidden from the user. This ease of use is nice, but the
performance advantages of having multiple cores are more
difficult to achieve.

In AMP systems, different OSs run on different cores. For
example, Linux could run on one core, and a Real Time
Operating System (RTOS) on another core, enabling the user to

employ the optimal OS for different tasks. Parallelization of
applications is easier, resulting in better performance gains.
However, the user needs to manage the resources, so this is not
as easy to implement in practice. AMP systems also are used
with multiple, heterogeneous cores so that not only is the OS
optimized, but the OS-processor core combination is optimized
for different tasks.

For a SMP system, the user just needs to port and bring up
the SMP OS on the SoC. This is not a trivial task, however,
with the Linux community there is a lot of help available. For
an AMP system, multiple OSs need to be ported and brought up
on the SoC, at least one of which will be a RTOS. Also, since
the user has to manage the resources and communication, there
is more opportunity for problems to arise. A well thought out
methodology is necessary to ensure that the AMP system will
work as designed.

In this paper the process for bring up of an AMP system is
described. The methodology is based on the use of virtual
platform technology, starting with the initial development of the
virtual platform and bring up of Linux on a single core and
finishing with bring up of the full AMP system. The steps are
described, showing how operating system (OS) aware tools and
customized memory access monitors can play a significant role
in easing the bring up process, reducing schedule and achieving
higher quality software. The current hardware-based software
development flow is first discussed, followed by a general
discussion of virtual platform technology, before describing the
AMP bring up methodology.

II. LIMITATIONS OF HARDWARE-BASED SOFTWARE

DEVELOPMENT, DEBUG AND TEST

The standard methodology for embedded software
development is to use some type of hardware as the
development platform. This could be a previous generation of
the SoC, a hardware emulator, a FPGA prototype, or some other
type of development board. These platforms have the benefit of
cycle accurate execution of the software, which is needed for
some software development. However, the requirement for
cycle accurate development platforms is overstated by users.

While there are advantages to using a hardware-based
development methodology, there are also disadvantages. These
disadvantages include

 Limited physical system availability
 Limited external test access (controllability)
 Limited internal visibility
 Typically 6 months or more from project start until

hardware platform is available to software
engineering team

To get around these limitations, the software is typically

modified for debug purposes. This takes the form, for example,
of adding printf and printk commands, using debug versions of

the OS kernels, and adding instrumentation to the source code in
order to use analytical tools. In all these cases the software is
modified, and the perturbed software will almost certainly not
have the same behavior as the clean source code. This results in
additional difficulties in debug, and puts the validity of
analytical results in doubt.

III. SOFTWARE SIMULATION (VIRTUAL PLATFORM)

ADVANTAGES

Instruction accurate virtual platforms, which are just
software simulation environments, are not cycle or timing
accurate. However, these virtual platforms do have significant
advantages:

 Earlier system availability
 Full controllability of platform both from external

ports and internal nodes
 Full visibility into platform
 Performance can be faster than real time
 Easy to replicate platform and test environment to

support regression testing on compute farms

Looking at the complete software development
methodology, virtual platforms should be used exclusively early
in the development process. However, the virtual platforms, due
to the visibility and controllability and the software development
tools available, can continue to be used and add value
throughout the duration of the software project. The hardware
platforms, including the final hardware, can be used when they
become available, with hardware based testing and virtual
platform based testing providing complementary benefits to
software engineers.

Before going further, some additional understanding of the
details of a virtual platform is needed.

Begin with an example of the software architecture to run
on a SoC, in this case for picture in picture video (Figure 1).
This architecture is then translated via manual engineering effort
into the hardware implementation. Conceptually, the hardware
implementation can then be translated into high level models of
the hardware components, including the various processors
(Figure 2). In practice, once the high level hardware
implementation is architected, the virtual platform models are
usually developed well ahead of the detailed hardware
implementation. As with Intellectual Property (IP) models for
hardware design, high level models of standard components
should be readily available from existing libraries.

For instruction accurate virtual platforms, the models should

have only as much information in the models as the software
developers need. There is no timing information needed in these
models, and any unnecessary information will slow the virtual
platform performance. The processor models can be thought of
as similar to instruction set simulators. However, for virtual
platforms, the ideal is to have a single simulator for both the

embedded world Conference 2014

processors and the peripheral and behavioral components, and
not a difficult-to-use and low performing co-simulation of
processors and other components. Architecturally, this means
that the models are separate from the simulator engine. While
this is advantageous from a performance and ease-of-use
perspective, it also enables software tools to be easily and
efficiently added into the simulation environment.

One last key point about virtual platforms is that the
combination of virtual platform models plus simulator executes
exactly the same binary software stack as will eventually run on
the hardware. No compiling for the host x86 workstation; if the
system uses an ARM processor, the same cross compilation tool
chain and flow are used to create the ARM binary executables to
run on the virtual platform or the hardware.

Video
In

Video
Out

Shared
Memory

OSD Key

ARM

ARM

DSP DSP DSP

Applications

Drivers

OS Kernels

Hardware Architecture Software Stack

CPU
Stack CDH

Bridge

Figure 2. Hardware implementation of picture in picture video system, also
showing the software stack that would run on the SoC. The virtual platform
implementation of this system looks exactly the same conceptually, but is
composed of high level, instruction accurate models of the hardware.

IV. CASE STUDY: OS PORTING, BRING UP AND

VERIFICATION ON ALTERA CYCLONE V SOC FPGA

A. Altera Cyclone V Device

The Altera Cyclone V SoC FPGA [2] was used because of
its power and versatility. This device combines the power of an
ARM-based SoC with the versatility of a FPGA. Key features
of the Cyclone V include a dual core ARM Cortex-A9 processor
(Cortex-A9MPx2), a rich set of peripheral components in the
Hard Processor System (HPS) including ethernet, USB, I2C, and
more, and a large amount of FPGA fabric that the user can
utilize for custom functionality. Altera offers a number of
components as IP for the fabric, including the Nios II processor
core. A block diagram of the Cyclone V HPS is shown in
Figure 3.

One of the advantages of the Cortex-A9MPx2 is that it can

be configured to run in either SMP or AMP modes. Also, for
AMP operation, the Cortex-A9MPx2 can be running in SMP
mode, and one or more Nios II processor cores can be added to
the fabric for heterogeneous AMP operation. Both scenarios are
discussed below.

B. Open Virtual Platforms Models and Modeling APIs

Open Virtual Platforms (OVP) [3] models and modeling
APIs were used to build the virtual platform of the Cyclone V
because of the availability of the processor core models in the
OVP library, the performance of the processor core models, the
ease of use of model development with the APIs and the tool
power that is enabled when running the platform with the
Imperas simulators.

OVP includes a library of models, APIs for developing
models and platforms and a reference simulator (OVPsim) for
executing those virtual platforms. The model library includes
over 125 different processor core models, plus over 100

Control
Overlay
Image

R
G
B

R
G
B

Main
Image

PIP
Image

Scalers Filters

Scalers Mixers

Video
Out

Figure 1. Software architecture of picture-in-picture video application software

Figure 3. Cyclone V SoC FPGA Hard Processor System

different peripheral models, and a variety of example virtual
platforms. While most of the models available from the OVP
website have been developed by Imperas, other users have
contributed models to the library. Most models are available as
both binary and source, with distribution governed by a
modified Apache 2.0 open source license.

C. Linux Boot on Single Core ARM Cortex-A9

The first step OS porting and bring up was to boot Linux on
a virtual platform containing only a single core ARM Cortex-A9
model. One of the advantages of using a virtual platform for
software development is that the virtual platform in total, as well
as the individual models, do not need to be complete. By this it
is meant that the virtual platform does not need to include
models of all the components on the hardware device, and some
of the component models may only include a portion of the
functionality or may only include the top level registers.

This methodology was used to create the initial Cyclone V
virtual platform, shown in Figure 4. Table 2 lists the
components in the virtual platform, and the degree of accuracy
or completeness of the model.

Table 2. Virtual platform component models.
Model Model Development Completeness

ARM Cortex-A9 OVP Library item Complete functional model
DMA OVP APIs Registers only

Ethernet OVP APIs Registers only
Imperas SmartLoader OVP APIs Complete functional model

SRAM OVP APIs Complete functional model
System Manager OVP APIs Registers only

Timers OVP APIs Complete functional model
UART OVP APIs Complete functional model

Development of the individual models and construction of

the virtual platform from the newly developed models and from

models from the OVP library took about 2 weeks of effort to
achieve a Linux prompt. Linux version 3.4 from Altera was
used for single core Linux. Default configurations were used.
The device tree was modified to comment out peripherals that
were not included in the virtual platform, as those peripherals
were not critical to the booting and testing of Linux. The time to
Linux prompt, the “virtual platform boot time”, is under 5
seconds for this virtual platform running on a standard x86
Windows or Linux host machine.

Figure 4. Virtual platform of the Altera Cyclone V used to boot Linux

ARM
Cortex™-A9UP

UART0

Timer0

SRAM

System
Manager

Ethernet

DMA

Timer1

Timer2

Timer3

Imperas SmartLoader

ARM
Cortex™-A9UP

UART0

Timer0

SRAM

System
Manager

Ethernet

DMA

Timer1

Timer2

Timer3

Imperas SmartLoader

embedded world Conference 2014

Once Linux was booting on the virtual platform, a suite of
tests was run to validate Linux behavior on the platform. In the
course of running this suite of tests, a bug was found in the
Linux kernel preemptive scheduling: Linux did not switch
correctly between multiple tasks, corresponding to multiple
applications, running in the Linux OS. OS-aware tracing tools
were used to find the bug, which involved reading from the
incorrect register in one of the timers. Once the bug was
observed, finding and fixing the bug took only hours.

D. Software Development, Debug and Test Tools

Virtual platforms offer the advantages of controllability and
visibility, but what tools are available to enable the realization of
these advantages? Using the Imperas virtual platform
environment, a suite of tools is available for use, plus users can
define custom tools. These tools use the binary interception
capability built into the Just In Time (JIT) code morphing [4]
simulation engine. Binary interception works by intercepting
the processor instructions before execution by the JIT engine.
Additional code may be added to the instruction for analytical
purposes, and then the combined instruction is processed by the
JIT engine. The original processor instruction is still executed,
unchanged, but now the additional analysis instruction is also
executed. One advantage over other virtual platform based
analysis techniques is that by using the JIT engine, the
performance overhead for any analysis tools is minimized,
typically achieving less than 10% [5].

Using binary interception for building software analysis
tools results in enabling analysis without modifying the software
– OS, firmware, driver, application – source code, a significant
advantage over hardware based software development
environments. In these environments, source code must be
instrumented and recompiled, such as for gcov and gprof, or a

debug version of the kernel must be used, or printf or printk
instructions are liberally sprinkled through the source code to
enable debug. These actions change the behavior of the
software, and as a result the bugs found and fixed in this
scenario are not necessarily what the user was trying to find.

A C language API [6] has been developed which enables
tool builders and end users to take advantage of the binary
interception capability. “Intercept libraries” are compiled for the
host machine, and then added in to the simulation environment.
CPU- and OS-aware tools have been built which raise the
abstraction level for analysis. As a simple illustration of the
value of these tools, debugging Linux bring up with instruction
tracing would require sifting through about 700,000,000
instructions before the boot prompt was observed. However, OS
task tracing reduces this to the approximately 700 tasks that are
executed as Linux boots. This makes it much easier to narrow
down the cause of any problem. Figure 5 shows a screen shot of
OS-aware tracing of task, execve and scheduler as Linux boots.

E. SMP Linux Boot on Dual Core ARM Cortex-A9

Once Linux was booting on the single core virtual platform,
the single core ARM processor model was replaced by the
model of the dual core Cortex-A9. Another UART was added to
the virtual platform for the second core, and an L2 Cache
Controller model with only the necessary functionality was also
added. Then SMP Linux was executed on the virtual platform.
Linux version 3.6 from Altera was used. There were no
problems bringing up SMP Linux on the virtual platform.

Figure 5. OS-aware tracing tool output.

F. RTOS Boot on Single Core ARM Cortex-A9

The third step in the process was to bring up the RTOS on a
single core ARM Cortex-A9 platform. This just reused the
initial platform used in the first step for single core Linux bring
up. The RTOS used was the Altera release of the Micrium
µC/OS-II [7] RTOS.

When running example applications under the RTOS,
incorrect behavior was observed. Again using the OS-aware
tools, this time tuned for µC/OS-II, bugs were discovered in the
global interrupt controller (GIC) register accesses. These were
easy to find using the tools; in contrast the bugs had not been
observed when bringing up the RTOS on hardware. The easy-
to-fix bugs were

 Accessing ICDICER 1 to 8 when only 0 to 7 exist
 Accessing ICDIPTR 08 to 63 when only 00 to 55

exist

G. AMP Boot on Dual Core ARM Cortex-A9

The fourth step was to bring up an AMP system involving
just the dual core ARM Cortex-A9. In this case, Linux would
run on one core, and µC/OS-II on the other core. This is not too
different from each operating system running on a single core.
However, the operating characteristics are more complicated,
including the requirement to ensure that each operating system
does not access memory that is dedicated to the other operating
system.

For this step, the virtual platform needed to be modified to
add the Altera Reset Manager component. Only the minimal
functionality needed to handle the reset prior to each OS booting
was required for the model. All other components remained the
same. Also, the Linux and µC/OS-II OS-aware tools were used
in the simulation environment. The additional tool added to the
simulation environment at this step was a custom memory
access monitor.

This custom memory access monitor used the binary
interception API to define which memory regions could be
accesses by which of the operating systems. This took the form
of a table written in C:

//
// Define watch areas for memory and peripherals defined in the
platform
//
memWatchT amcWatch[] = {

// name watchLow watchHigh allowedCPUs
 { "Linux memory", 0, 0x2fffffff, LINUX_CPU },
 { "uCOS memory", 0x30000000, 0x31ffffff, UCOSII_CPU },
 { "gmac0", 0xff700000, 0xff700fff, LINUX_CPU },
 { "emac0_dma", 0xff701000, 0xff701fff, LINUX_CPU },
 { "gmac1", 0xff702000, 0xff702fff, LINUX_CPU },
 { "emac1_dma", 0xff703000, 0xff703fff, LINUX_CPU },
 { "uart0", 0xffc02000, 0xffc02fff, LINUX_CPU },
 { "uart1", 0xffc03000, 0xffc03fff, UCOSII_CPU },
 { "CLKMGR", 0xffd04000, 0xffd04fff, LINUX_CPU },
 { "RSTMGR", 0xffd05000, 0xffd05fff, LINUX_CPU },
 { "SYSMGR", 0xffd08000, 0xffd08fff, LINUX_CPU },
 { "GIC", 0xfffec000, 0xfffedfff, LINUX_CPU },
 { "L2", 0xfffef000, 0xfffeffff, LINUX_CPU },
 { 0 } /* Marks end of list */
};

In the “Allowed CPU” column, “Linux CPU” and “UCOSII

CPU” were used instead of CPU0 and CPU1 for clarity.

When the virtual platform was run, there were two results.
First, a bug was found in the Linux accesses of the GIC
registers. This bug had been previously found in a hardware
bring up of the AMP system. Working on hardware, it took
about 2 weeks to find and fix the bug. In contrast, using the
virtual platform with the OS-aware tools took only 2 days to find
and fix the bug.

The second result was from the memory access monitor, in
the form of warnings about unallowed memory accesses. A
partial list of those warnings is

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access
violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access
violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access
violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010

Warning (AMPCHK_MRV) cpu_CPU1: AMP read access
violation in Linux memory area. PA: 0x00000020 VA:
0x00000020

Note that both physical and virtual memory address are

given as part of the warning message. Using these messages,
issues with the low level boot code were quickly fixed, resulting
in safe operation of the AMP system.

H. Linux Boot on Single Core Nios II

For this step, a simple virtual platform with the model of the
Altera Nios II [8] processor was used (Figure 6). The same OS-
aware tools that were used earlier for other Linux bring up steps
on ARM were used again for the Nios II Linux bring up, as
these tools are not specific to the processor core. Using this

embedded world Conference 2014

process enabled quick bring up of Linux on the Nios II virtual
platform.

jtag_uart

Timer_1ms

Memory

uart.s1

sysid

Flash
Controller

Ethernet
MAC

jtag_uart

Timer_1ms

Memory

uart.s1

sysid

Flash
Controller

Ethernet
MAC

Figure 6. Virtual platform used for booting Linux on Nios II

I. Full AMP System: SMP Linux Boot on Dual Core ARM
Cortex-A9 Plus Linux Boot on Nios II

The final step was combining the SMP Linux ARM Cortex-
A9MPx2 virtual platform with the Nios II Linux virtual
platform, and running these together. Due to the work
performed in the previous steps, there were no issues in this final
step.

V. SUMMARY

As embedded systems get more complex, software testing
becomes more critical. Software testing on hardware systems
has limitations in the controllability and visibility that can be
detrimental to comprehensive testing of the software.
Instruction accurate software simulation – virtual platforms –
complement hardware based environments because of having
the required controllability and visibility. Virtual platform based
OS-aware and custom memory access monitoring tools can
provide both higher quality and reduced schedules for OS
porting and bring up. Results were shown for a virtual platform
of a heterogeneous ARM-Nios AMP system on Altera Cyclone
V SoC FPGA device.

REFERENCES
[1] “Symmetric Multiprocessing Vs. Asymmetric Multiprocessing”, Toby

Foster, Electronic Design Magazine, 13 December 2007
(http://electronicdesign.com/digital-ics/symmetric-multiprocessing-vs-
asymmetric-processing).

[2] “Cyclone V Device Overview”, Altera Corporation, Version 2013.12.26.

[3] Open Virtual Platforms API documentation and user libraries are available
at www.OVPworld.org

[4] “Just In Time Compilation”, Wikipedia article,
http://en.wikipedia.org/wiki/Just-in-time_compilation.

[5] “Embedded Software Dynamic Analysis: A New Life for the Virtual
Platform”, Victoria Mitchell, presented at the North American SystemC
User Group 19 (NASCUG 19) meeting, 3 June 2012.

[6] “Imperas Binary Interception Technology User Guide”, Imperas Software
Limited, 2013.

[7] µC/OS-II RTOS Overview, http://micrium.com/rtos/ucosii/overview/,
Micrium, Inc. 2014.

[8] “Nios II Processor: The World’s Most Versatile Embedded Processor”,
Altera Corporation, http://www.altera.com/devices/processor/nios2/ni2-
index.html, 2014.

