
embedded world 2015 
www.embedded-world.eu 

 

Parallel Simulation Accelerates Embedded Software 
Development, Debug and Test 
 

James Kenney, Simon Davidmann and Larry Lapides 
Imperas Software Ltd. 

Oxford, United Kingdom 
larryl@imperas.com 

 
Abstract – For any simulation technology, the key factors for 

usability are controllability, observability, and performance. For 
instruction accurate virtual platforms, the controllability and 
observability have been successfully addressed in various ways, 
including using APIs for the processor models or tools integrated 
into the simulation environment. In the area of performance, where 
near real time simulation performance is required, virtual 
platforms have been limited to execution in a single thread because 
of the need for determinism in the simulation. This need is driven 
by the loss of many of the key benefits of controllability and 
observability if the simulation is not repeatable. While multiple 
threads on multiple cores of the host x86 workstation offer the hope 
of performance improvement, the overhead for synchronizing 
multiple simulation execution threads to maintain deterministic 
simulation results has cancelled out any performance gains realized 
by parallelizing the simulation.  
 
A new synchronization algorithm has been realized, with much 
lower overhead, so that significant performance gains have been 
achieved.  Performance gains of over 2.5x have been achieved for 
symmetric multiprocessor (SMP) systems simulating on a 4-core 
host machine, while performance gains of over 3x have been 
achieved for asymmetric multiprocessor (AMP) systems. The same 
principals have also been applied to accelerating the performance 
of virtual platforms where the performance bottleneck is one or 
more of the models used for accelerating specific applications such 
as image recognition.  
 
Keywords – Virtual platform, parallel simulation, simulation 
performance, SMP 

 

I. INTRODUCTION 

It has long been a goal of simulation technologists, 
including those working on virtual platforms (software 
simulation), to use the multiple cores on the host x86 PC to 
accelerate simulation performance.  For Just-In-Time (JIT) 
code-morphing, or binary translation, virtual platforms [1, 2, 3], 
a new synchronization algorithm has been developed, enabling 
significant performance gains.  The new parallel simulation 
accelerator requires no changes to the models in the virtual 
platforms, the software tools in the simulation environment or 
the software being executed on the virtual platform.  
 

 
 
The requirement for simulation performance in virtual 

platforms is driven by two factors. The first is the length of 
individual software tests.  This is exemplified by the network 
server use case where individual tests can include the execution 
of over 10 trillion instructions.  For a simulator running at 100 
million instructions per second, the execution time of a single 
test will be more than 24 hours.  
 

The second factor driving performance is the testing 
requirements for safety critical systems, such as those in the 
automotive industry.  In this case, the overall test suite may 
consist of thousands of tests, which need to be executed each 
day as part of a regression test methodology.  In addition, other 
tools such as code coverage and fault injection need to be added 
to the simulation environment to meet testing requirements.  

 
When these factors are combined with virtual platforms that 

have multicore processors, or multiple processors instanced in 
the platform, or both, the need for parallel simulation 
acceleration becomes evident.  With JIT virtual platforms, the 
total simulation throughput will stay relatively constant as the 
number of simulated cores increases (see Fig. 1), however, this 
means that the simulation throughput per core decreases.  Since 
the number of instructions per core, or the overall number of 
tests, are going to stay the same as the virtual platform 
complexity increases (measured by increasing numbers of 
simulated cores), simulation technology must improve if virtual 
platforms are to remain a viable technology for embedded 
software development, debug and test.   
 

The new parallel synchronization algorithm has been 
implemented and tested in the Open Virtual Platforms 
simulation environment [3].   

 

II. SIMULATION TECHNOLOGY 

A. Just-In-Time Code Morphing Simulation 

 
Just-in-time (JIT) code translating simulators are now 

widely recognized to be the fastest and most powerful tools for 
development of instruction accurate virtual platforms. A single-
threaded JIT-based simulator is typically capable of delivering 
simulation performance of billions of simulated instructions per 
second.  Virtual platform simulators operate by dividing time 
into quanta, of fixed or variable size, specified by the platform 
user.  For multiple processor platforms, each processor is  



 

 
simulated in turn for a quantum. When all processors 

have 

 
simulated in turn for a quantum.  When all processors have 
finished the quantum, time is advanced and simulation resumes 
for the first processor in the next quantum. 
 

B. Parallel Simulation Algorithm 

 
This paper reports on a new parallel simulation technology 

which extends JIT code-morphing virtual platform simulation: 
MultiProcessor target on MultiProcessor host (MPonMP).  With 
the MPonMP technology, parallelism is implemented using 
POSIX threads (pthreads).  Each independent processor core 
runs in a separate pthread. For example, a simulation of a 
platform containing an Imagination MIPS P5600 quad core 
processor model will have a separate pthread for each of the four 
processor cores.  Fig. 2 illustrates the MPonMP technology.   
 

For MPonMP, instructions in a processor model that require 
synchronized execution are identified by a call to a special 
function during the JIT code translation phase. For example, in 
the Open Virtual Platforms (OVP) ARM processor model C 
code source, both traditional exclusive access instructions (e.g. 
SWP) and scalable exclusive access idioms (e.g. 
LDREX/STREX) are identified by calls to this function. 
 

When an instruction that requires synchronized execution is 
encountered, the simulator first stops all other concurrently 
executing threads.  It then executes the instruction in its entirety 
before restarting the concurrent threads.   
 

The MPonMP parallel simulations are quantized in the same 
way as single-threaded simulations.  All processors must 
complete simulation of a quantum before time is advanced to the  

 
next quantum. This means that the end of a quantum is also a 
synchronization point. 
 

III.  PARALLEL SIMULATION RESULTS 

 
Three examples have been chosen to illustrate the 

performance improvements and scalability of the MPonMP 
technology:  a tightly coupled application running directly on the 
processor cores, applications running on SMP Linux, and 
running on a 16 core host workstation.   

 

Dhrystone Many Core Benchmark

0

200

400

600

800

1000

1 3 5 7 9 11 13 15 17 19 21 23

Cores

M
IP

S MIPS total

MIPS per core

 
Figure 1.  Simulation throughput versus simulated processor cores for single threaded JIT virtual platform 
shows constant overall simulation throughput, but decreasing throughput per core as the number of cores 
increases.   

  

Local  Memory

CPU2

Lo cal M emory

CPU1

Loca l Memory

CPU3

Local Mem ory

CPU4

Host Processors

Simulation

x8 6 x86 x86 x86

Local  Memory

CPU2

Local  Memory

CPU2CPU2

Lo cal M emory

CPU1

Lo cal M emory

CPU1CPU1

Loca l Memory

CPU3

Loca l Memory

CPU3CPU3

Local Mem ory

CPU4

Local Mem ory

CPU4CPU4

Host Processors

Simulation

x8 6x8 6 x86x86 x86x86 x86x86

 
 

Figure 2.  With MPonMP, each processor model in the 
virtual platform is simulated in a separate thread on the 
host x86 workstation.  



embedded world 2015 
www.embedded-world.eu 

 

A. Tightly Coupled Bare Metal Application 

 
The parallel primes search application, distributed with the 

ARM DS-5 product [4], was tested with the MPonMP 
technology.  The program is very tightly coupled; the four cores 
work together to discover primes using wholly-shared memory, 
synchronizing at high frequency using a simple mutex library 
implemented in assembly code. Critical regions of the mutex 
library are protected using LDREX/STREX instruction pairs.  
The application was modified to increase the number of primes 
for which to search from 100 to 1,000,000.  The processor 
model in the virtual platform was an ARM Cortex-A9MPx4, 
built using the OVP APIs [5].  For this example, a host PC with 
a 3.5GHz quad core Intel i7-4770K was used.   

 
The simulator quantum size was set to 0.00001 simulated 

seconds (10 µsec). This means that each core will execute 5,000 
instructions per quantum, given the simulated MIPS rate of 500 
chosen for each processor.  Choice of quantum size is important: 
if the quantum is very small, very fine grain interaction effects 
between processors can be modeled, at the cost of slower overall 
simulation times.  Large quantum sizes allow much faster 
simulation, but may cause odd behavior to be observed in very-
tightly-coupled applications.  Typically, a quantum size of 500 
to 10,000 instructions is a good compromise. 
 

Simulation results for this example are shown in Table 1.  
All runs generate the same (correct) value for the millionth 
prime, 15,485,863. The number of simulated instructions differs 
slightly for single-threaded and MPonMP simulations: both 
simulation runs are deterministic, but the choices they make 
about the order in which to handle events are not the same. The 
runs represent different legal executions of the same application 
program. 

 
The column MIPS Rate is the total number of simulated 

instructions executed by all cores divided by the elapsed real 
time, in millions of simulated instructions per second. The 
fastest simulation executes at over 2.7 billion simulated 
instructions per second on this host machine. 

 
An interesting aspect of the prime search algorithm is that 

as primes increase, it generally takes longer to find each prime 
before it is submitted to the shared database, which requires a 
synchronizing event.  This algorithm can be used as a tool to 
establish how effective the MPonMP algorithm is based on 
frequency of synchronization events between cores.  To do this, 
the prime search application was modified to search for 100,000 
primes, starting with a different initial candidate each time.  The 
results are shown in Fig. 3.  As expected, the speedup decreases 
as the synchronization rate increases.  Even so, the speedup at 
the highest synchronization rate is still greater than 1.6 times the 
single threaded simulation performance.   

B. Applications Running on SMP Linux 

 
This example studies the effect of running user-mode 

benchmarks in a simulation of a virtual platform running a 
booted Linux distribution.  The processor model used here is the 
OVP model of the ARM Cortex-A57MPx4.  The same host 
machine was used.  Once Linux is booted, using a platform 
capable of booting the same Linaro Linux [6] as the ARMv8 
Foundation model and using the FMv1 memory map, a script is 
run that executes a number of benchmark programs in parallel.  
The script executes each benchmark a fixed number of times.  
By default, each benchmark is executed six times. The 
benchmarks are a Fibonacci number calculation program, the 
standard Dhrystone benchmark, a program that solves the 8-
queens problem, and a program that performs a sieve sort of a 
large number of random numbers. 
 

One naïve objection to the validity of results presented here 
might be that the Linux benchmark applications that are run do 
not communicate with each other: surely MPonMP simulation 
would not show performance improvement for a set of 
communicating simulated pthreads, for example? 

 
Although the simulated Linux processes in this example do 

not explicitly communicate, the cores on which those processors 
run do regularly communicate, to arbitrate access to shared 
resources of the SMP Linux, such as memory and devices.  The 
MPonMP parallel simulation algorithm makes no distinction 
between explicit communication using user-space constructs 
such as pthreads and implicit communication due to contention 
for kernel resources: both require correct simulation of 
exclusive-access constructs. 

 
It is true that communication is relatively infrequent in this 

example; however, this is very often the case for processes 
running under SMP operating systems.  In addition, the previous 
example demonstrated that even when communication 
(synchronization) is frequent, MPonMP can still deliver 
significant performance benefits. 

 

C. Parallel Simulation Scalability 

 
The previous case studies have used a simulated ARM quad 

core processor in both bare metal and Linux application 
scenarios. In each case the host was a four processor x86 PC.  

 
 This case study explores how MPonMP scales when the 

number of simulated cores is increased and when the number of 
host x86 processors is increased. 



 
 

 
 

 
This example has a platform which includes many CPUs, 

This example has a platform which includes many CPUs, 
where each CPU is a single core and has its own program and 
data memory and has a copy of the program being run, in this 
case the Dhrystone benchmark.  In this example the number of 
processors instanced in the virtual platform is varied from 1 to 
512.  The host PC for this example is a 2.7GHz 16 core x86_64.   

 
Fig. 4 shows that as the number of simulated cores increases 

the simulation throughput increases, until it peaks when there is 
one simulated core per host x86 processor.  After this, simulated 
throughput gradually declines as more and more cores and 
simulated memory are added to the simulation. Peaks occur in 
the graph when the number of simulated cores is an exact 
multiple of the number of host cores, because this allows the 
workload to be shared most efficiently between the available 
cores on the host.   

 

IV. SUMMARY 

 
A new parallel simulation algorithm has been used to 

enhance JIT-based code-morphing software simulation resulting 
in increased simulation performance for virtual platforms 
containing multiple processors.  Significant performance 
increases have been achieved with the parallel simulation 
technology for both bare metal applications and applications 
running on the Linux operating system.  Additionally, the 
parallel simulation technology has been shown to scale such that 
host PCs with larger numbers of processors can be used to 
simulate virtual platforms with increasing numbers of instanced 
processor models.   

Table 1.  Simulation results for the parallel primes search application.   
 

Description Elapsed Time Simulated Instructions MIPS Rate Last Prime Found Speedup 

Single-threaded 99.64s 128,786,424,838 1292 15,485,863 N/A 

MPonMP 47.45s 128,786,383,511 2714 15,485,863 2.10x

 

1

1.25

1.5

1.75

2

2.25

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Sync Rate x 10^4

S
p

ee
d

u
p

 F
ac

to
r

 
 

Figure 3.  Speedup factor versus synchronization rate for MPonMP simulation.   



embedded world 2015 
www.embedded-world.eu 

 

 

 

REFERENCES 
[1] “Just In Time Compilation”, Wikipedia article, 

http://en.wikipedia.org/wiki/Just-in-time_compilation.   

[2] Qemu http://wiki.qemu.org/Main_Page 

[3] Open Virtual Platforms, OVPsim, http://en.wikipedia.org/wiki/OVPsim 

[4] ARM DS-5 Tools (DS500-BN-00004-r5p0-19rel0), 
http://ds.arm.com/downloads/ 

[5] Open Virtual Platforms API documentation and user libraries are available 
at www.OVPworld.org 

[6] http://www.linaro.org/downloads/ 

 
 

Figure 4.  Simulation throughput versus number of 
simulated cores with 16-core host x86 machine.  


