mperas

Are the RISC-V Design Freedoms Leading to RISK in Verification Quality?

Larry Lapides

6 December 2021

Imperas Story

- Imperas founding team has background in Electronic Design Automation (EDA) tools, and FPGA and processor IP companies
- Imperas founding team saw the need for tools and methodology similar to EDA for software debug, test and analysis, based on software simulation
- 5 years ago, Imperas saw that RISC-V was transitioning from an academic exercise to an industrial community
- After building processor models and tools to support more than 12 different instruction set architectures, jumping into RISC-V was a natural move for Imperas
- While design verification was not our first thought, it has become apparent because customers have shouted this at us! – that RISC-V processor DV is on the critical path for broad RISC-V adoption

ISAs Past, Present & Future

- Earlier this year we marked 50 years since the invention of the microprocessor
- Intel and the x86 architecture has dominated the compute space for the last 40 years
- Arm has dominated the mobile space for the last 20 years
- RISC-V? Poised to dominate all the unclaimed markets for the next 20/30/40 years

Page 3

Imperas

How Did Intel & Arm Come to Dominate Their Market Segments?

- Early entry
- Product met/exceeded the market requirements and expectations
- Ecosystem
- Quality product

What is RISC-V? Can RISC-V duplicate the business and technical conditions to dominate the unclaimed market segments?

What is **RISC-V**?

 It's an instruction set architecture standard

© Imperas Software Ltd.

What is **RISC-V**?

 It's the ability to customize a processor to meet specific market requirements

What is **RISC-V**?

- It's an instruction set architecture standard
- It's the ability to customize a processor to meet specific market requirements

RISC-V is a Pushme-Pullyou Between Compliance and Customization

 It's an instruction set architecture standard

 Compliance to the ISA is important for the development of the ecosystem

- It's the ability to customize a processor to meet specific market requirements
- Customization is important for the development of products that meet the demands of the various markets

How Did Intel & Arm Come to Dominate Their Market Segments?

- Early entry
- Product met/exceeded the market requirements and expectations
- Ecosystem
- Quality product

What is RISC-V? Can RISC-V duplicate the business and technical conditions to dominate the unclaimed market segments?

How Did Intel & Arm Come to Dominate Their Market Segments?

- Early entry depends on the business using RISC-V, and the market they are attacking
- Product met/exceeded the market requirements and expectations
- ✓ Ecosystem
- Quality product

The Critical Element for RISC-V Worldwide Domination is Product Quality, i.e. RISC-V Processor Design Verification

Quality Product = Comprehensive DV Effort

- DV history: 20+ years ago the EDA industry collaborated with semiconductor companies to develop verification tools and methodology for SoC DV, helping customers achieve over 90% first silicon success, versus the industry average of 40%
- However, verifying SoC blocks and a complete SoC is different from verifying a CPU
 - Intel, Arm and others have kept verification in house; best known methods are not public
 - However, DV engineers from these companies are now taking jobs in the RISC-V community; SiFive and Codasip are good examples of adding processor DV teams
 - Processor IP companies that were previously supporting their own ISAs e.g. Andes, MIPS – are now part of the RISC-V community

RISC-V DV Requirements

Increasing Complexity (e.g. multi-hart, vectors, privilege modes, interrupts, OoO pipeline, ...)

Increasing Customization

Processor DV Is Not SoC DV

Some commonalities

- Still want to use UVM
- Still want to use constrained random test generation ("instruction stream generation")
- Still want to have functional coverage metrics
- However ...
- A Reference Model is needed for checking correct behavior
- Advanced processor features multiple harts, interrupts, privilege modes, Debug mode, multi-issue and out-oforder pipelines, ... – make the DV requirements much more demanding

Imperas

RISC-V DV Requirements

Increasing Customization

- At the low end, post-simulation tracecompare methodology will usually work
- At the high end, asynchronous-stepcompare methodology is needed
- Imperas, and our customers and partners, are working together to develop and publicize RISC-V DV methodology
 - Nagravision, NSITEXE, Nvidia Networking, Silicon Labs, ...
 - Andes, Codasip, MIPS, OpenHW Group, SiFive, ...

RISC-V SUMMIT, San Francisco, December 2021

Hello, my name is Koji Adachi from NSITEXE,

50.20

Hello, my name is Koji Adachi from NSITEXE, I am the manager of RISC-V core development. NSITEXE is a subsidiary of DENSO, our knowledge is automotive electronic devices. For over 2 years NSITEXE has been been developing

multiple-hart vector RISC-V processors with Imperas.

As for this years news, our first product, DR1000C has received ISO 26262 ASIL-D ready certification.

And now we have done a big deal with the most famous automotive IC vendor.

We have already started a new core project with Imperas DV.

The new core is a more challenging and difficult development

and I expect Imperas DV technology to deliver the most high performance and high quality.

nst. Cache	Inst. Cache	Inst. Cache	Inst. Cache	Inst. Cache	VPU Register File (VRF)		ASIL D READY
Control Core Unit (CCU)	Scalar Proc. Unit (SPU)	Scalar Proc. Unit (SPU)	Scalar Proc. Unit SPU) SPU) SPU)	Scalar Proc. Unit (SPU)	Vector Proc. Unit	SAAR	Functional Safety www.sgs-tuev-saar.com
CCU Local RAM (CLM)	SPU Local RAM (SLM)	SPU Local RAM (SLM)	SPU Local RAM (SLM)	SPU Local RAM (SLM)	(VPU)		
Read Only Cache for VVM (ROC)	MPU	WDT	DTU	ICU	VPU Local RAM (VLM)		

MPU: Memory Protection Unit WDT: Watch Dog Timer DTU: Data Transfer Unit ICU: Interrupt Controller/Request

SMU: System Management Unit DBG: Debug Unit EMU: Error Management Unit

• 2021-Jul-13

- NSITEXE achieves world's first RISC-V processor with vector extension certified for <u>ISO 26262 ASIL D</u> ready product
- 2021-Aug02
 - NSITEXE: A New product RISC-V 32bit CPU "NS31A" which supports <u>ISO26262 ASIL D</u>
- 2021-Nov-09
 - NSITEXE DR1000C, a RISC-V based parallel processor IP with vector extension (DFP: Data Flow Processor) has been <u>licensed for Renesas' new RH850</u>/U2B Automotive MCUs

Imperas and RISC-V DV

- Working on models since 2016
- Working on compliance since 2017
- Working with customers on RISC-V DV since 2018
- Evolving levels of DV
- Announced today: ImperasDV solutions for RISC-V processor DV

RISK in RISC-V?

- RISK can be reduced to risk by deploying a well thought out verification methodology, including production-proven tools and reference models
- ImperasDV solutions
 - Come to our booth!
 - www.imperas.com

Imperas Thank you

info@imperas.com

www.imperas.com

www.OVPworld.org

For more information on ImperasDV stop by our RISC-V Booth or visit

www.imperas.com/ImperasDV