mperas

Is hardware/software co-design now a reality for applications with RISC-V?

Kevin McDermott, 8th December 2021

Microprocessor at 50 in 2021

Imperas

The original November 15, 1971 ad for the Intel 4004. 🔯 Intel

Microprocessor timeline (the first 50 years)

- Computer on a chip
- The RISC vs CISC wars
 - Can complexity help simplify the problem
- Desktop and embedded
 - Complexity and quality, embedded reliability for critical systems
- Supercomputer (Academic) -> Datacenter (Commercial)
 - Lots of compute resources, some cost/size/location implications
- Standard devices vs Application Specific Integrated Circuits (ASIC's)
 - Design for the mass market or optimize systems performance at the chip level
- Multicore & SoC (System on Chip)
 - Heterogeneous, just the right features in just the right configuration
 - 10's, 100's, 1,000's of cores......

And do not forget about the software.....

- Programming languages
- Development tools
- Operating Systems and RTOS (Real-Time Operating System)
- Application software
- Internet
- Apps
- Games

Imperas

- "nobody designs a chip without simulation", at Imperas we believe that:
- "nobody should develop embedded software without simulation"
- Imperas develops simulators, tools, debuggers, modeling technology, and models to help embedded systems developers and SoC designers get their systems running... and their hardware verified
- 12+ years, self funded, profitable, UK based, team with much EDA (simulators, verification), processors, and embedded experience

www.imperas.com www.OVPworld.org

mperas

Simulation solutions for SW developers

- World class multicore simulator and full system emulator
- Library of advanced Verification, Analysis, Profiling tools
- Eclipse based Multiprocessor / Multicore debugger

ImperasDV for RISC-V CPU Verification

mperas

- New solution to make it easy to verify RISC-V processor
- Works with SystemVerilog or C/C++ and Verilator
- sync-lock-step-compare and async-lock-step-compare

Id Games QUAKE – on RISC-V

- This demo is RISC-V RV32, also runs on Imperas: RV32,RV64,MIPS32,ARM32,ARM64,OR1K
- Imperas virtual platform simulators can do sound, mouse/keyboard input, graphics output
- Imperas runs fast, real-time or faster...

moeras

Co-Design: HW and SW Optimistic view of optimized design flow

The ideal goal:

- Hardware optimized for the application requirements
- Software optimized for the hardware resources and efficiency
 - Repeat above steps.....

But what about the iteration time.....

- Hardware prototypes based on 1st order assumptions => estimate (guess ?)
 - Software partitioned for anticipated resources that are not yet implemented
 - Wait for hardware availability, wait to test full application, wait to debug....
 - Wait for software to test the prototype hardware (see step #1)
 - Slow iteration cycles => latest hardware runs last generation software a bit better

Amdahl's Law -A guideline for multi-core efficiency

- IBM computer architect & entrepreneur
 - Left IBM when his ideas were rejected
 - Founded Amdahl computers:
 - Cheaper, faster, more reliable
 - IBM plug-compatible...

 $S_{latency}(s) = \frac{1}{(1-p) + \frac{p}{s}}$

 Amdahl's law (1967) is used in parallel computing to predict the theoretical speedup when using multiple processors

• S_{latency} is the theoretical speedup of the execution of the whole task;

- *s* is the speedup of the part of the task that benefits from improved system resources;
- p is the portion of execution time that the part benefiting from improved resources originally occupied.

© Imperas Software Ltd.

8-Dec-21

Why RISC-V?

- Optimized processor
 - Just the right features with just the right configuration
 - Flexible but standard extensions (= software ecosystem support)
 - Custom instructions (= application optimizations)
- Optimized platforms
 - Heterogeneous from multcore to clusters and beyond
 - Multiple optimized processors within a common framework
 - Custom hardware design with software compatibility

Modern Application Development Example for AI hardware accelerators

- Cloud based resources
 - Develop AI algorithm
 - Real word datasets (large scale models)
 - Need hardware acceleration for efficiency and deployment
- Virtual Prototype
 - Model hardware as abstraction for software development
 - Iterate design configurations at the speed of software
 - Functional test framework for processor hardware
 - SW and HW co-design

Example customer project

- Customer project
 - Full AI / ML engine
 - 150+ CPU cores
 - Over half with RISC-V Vector extension engine
- Imperas Reference Models and Virtual Platform provides environment for software stack development
- Simulation runs of software stack running in virtual platform take ~ 2hrs @ 500MIPS
 - Cross compiled software running on simulated CPUs
- Allows hardware platform configuration, re-configuration, architectural changes
 - Explore performance options
 - Runs real software (production binaries) can see how it interacts with HW configuration
- Running in Imperas virtual prototype more than a year before RTL commit
 - Customer has SW and is looking to design HW to make it work the way they want...
- Also a by-product: kick-start SoC process by feeding models into HW DV at start

RISC-V => Freedom to innovate

- Design options now available at the point of use
 - End of the 'one-size-fits-all'
 - Optimize with the right features and configuration options
- With RISC-V any developer can now optimize a custom processor
 - If you design it, you also need to test it!
 - Processor verification is migrating from a few specialist IP suppliers to all IP users that customize or optimize a RISC-V processor

ImperasDV for RISC-V CPU Verification

RISC-V

VERIFICATIO

Imperas

ImperasDV

Ouality Verification

for the design

ireedom of

RISC-V

RISC-V leading the next X years of Processors

- Open standard ISA
- Standard extensions and configurations
- Extensive software ecosystem support
- Flexibility with Compatibility
- Optimized hardware with software co-design
 - Start you next project with Virtual Prototypes
 - Why wait for hardware?
- 2022 prediction
 - Verification ecosystem supports mass adoption of RISC-V innovation

Thank you!

Stop by our booth in the RISC-V exhibit area or contact us at

info@imperas.com

www.imperas.com