
www.embedded-world.eu

Using Virtual Prototypes to Improve the Traceability

of Critical Embedded Systems
Jean-Michel Fernandez

Embedded Systems
Magillem Design Services

Paris, France
fernandez@magillem.com

Larry Lapides
Embedded Software

Imperas Software
Oxfordshire, United Kingdom

larryl@imperas.com

Abstract — This paper explains how the combination of
innovative traceability techniques with advanced Virtual
Prototyping execution environment helps detecting and locating
critical embedded system bugs located at the frontier of Hardware
and Software, by tracing the dependencies between all the objects
of any kind such as requirements, specification, documentation,
hardware or software meta-data.

Keywords — Embedded System; Traceability; Requirement;
Specification; Design; Documentation; Virtual Prototype;
Software; Hardware; SystemC; IP-XACT

I. INTRODUCTION
Designing critical systems requires compliance with

domain specific safety standards such as DO-178B/C for
avionics or ISO-26262 for automotive, which in turn require
strong traceability from the functional specification down to
the implementation of the complete system. Traceability is one
of the essential activities of requirements management: it is
used to ensure that the right product is being built at each phase
of the embedded systems development life cycle, to measure
the progress of that development and to reduce the effort
required to determine the impacts of requested changes.

Efficient tools exist to trace requirements by creating and
managing specification-implementation links. But to
unambiguously ensure the completeness of a requirement,
these tools usually miss the links between the hardware objects
(such as an interrupt signal or a register), the software objects
(such as a safe routine) and their execution state. Moreover, in
order to record the execution state of an object, this object must
be observable.

Adding a link to the design execution on the physical
prototyping board may come too late in the design cycle to
capture functional specification or requirements errors.
Moreover, some of the objects (register value, interrupt signal)
may not be observable on the physical prototype, or corner
case states may not be easily achievable, leading to the inability
to create or observe an error.

This paper describes how Virtual Prototypes (VPs) can be
used to create the missing link between the functional
requirements and their validation. First it describes how VPs
can help verifying functional requirements. Then it details how
traceability techniques can be combined with VPs to improve
the debug of bugs that sit at the frontier between the Hardware
(HW) and the embedded Software (SW). Last it shows on a
typical use case how these combined techniques could help to
quickly locate a system bug and discusses improvement areas
of this work.

II. VIRTUAL PROTOTYPES

A. Verifying functional requirements
Functional requirements come from a usually informal

analysis process to turn raw, incomplete requirements as
elicited from the system stakeholders into a structured system
requirements specification document. Various techniques exist
to verify functional requirements ranging from manual reviews
and inspection to formal verification and validation (V&V),
using or not prototype or test designs.

The Validation process ensures that the system being
developed or changed will satisfy its stakeholders, and that the
system requirements specifications meet the stakeholders’
goals and requirements. The Verification process ensures that
each step followed in the process of building the embedded
system (software and hardware) yields to the right product and
that the requirement specifications are consistent with the
refined implementation: functional model, accurate design,
physical implementation.

Prototyping is a common process to help stakeholders (end
users and customers) discover problems by validating and
verifying their requirements: it is more accessible than the
system specification, it demonstrates the requirements, it is
reusable and evolutive. It can take various forms ranging from
a paper prototype of a computerized system to a formal
executable model of the specifications.

B. Using Virtual Prototypes
VPs are fully functional software simulation models of

complete hardware systems that can execute unmodified
production binary code at near real time speed. VPs therefore
enable early functional validation of embedded software on the
target hardware platform, usually months before the physical
prototype is available. In addition, because of the nature of
simulation, VPs offer controllability, observability and
flexibility. VPs are usually based on SystemC standard [1]. In
addition to the simulation environment, VP tools provide the
necessary debug, monitoring or analysis features; usually
implemented in a non-intrusive manner, without modifying or
instrumenting the production code.

III. INTEGRATING SPECIFICATION, DESIGN AND
DOCUMENTATION

Magillem [3] tools use IP-XACT [2] as a pivot metadata to
represent both HW and embedded SW. IP-XACT is a standard
with a strong semantic that can be seen as a documentation
format that references data from potentially multiple
heterogeneous views. It was originally designed to represent
Hardware components, but could equally be used to represent
any object that communicates through interfaces. In addition,
Magillem tools use a proprietary metadata to encompass all the
standards and de-facto standard document formats based on
XML such as DITA or Microsoft Office formats. XML-based
formats (such as IP-XACT, DITA or Docx) allow the
processing of its content by a tool. This mechanism allows
Magillem to represent any document fragments and manage
any link between objects of any kind.

A. Creating the VP
Imperas [4] and OVP [5] provide all the SystemC building

blocks to quickly build a Virtual Prototype of an embedded
system. These blocks can be automatically packaged into IP-
XACT metadata with Magillem tool and the hardware system
can be seamlessly assembled, compiled and simulated together
with the embedded Software in a unified Eclipse framework.

B. Creating the links
Magillem provides an intuitive framework for creating all

the links between any fragments of documentation
(requirements, specification, code, datasheet…). The fragment
can be as detailed as needed, ranging from a complete
document (e.g. the specification of the hardware LED
controller) to the finest unit object (e.g. the LED voltage or
color parameter). Once the association is done the tool is able
to analyze the impact of any change in any of the linked
objects.

C. Debugging the Software
One of the most typical usages of a Virtual Prototype is to

help writing, debugging and analyzing the embedded Software.
Software developers spend a large part of their time debugging

the SW. Usually the bug comes at the boundary between
Hardware and Software, and it is only visible at run time. VP is
a perfect tool for finding such bugs because it provides a very
good observability of the HW registers and signals (e.g. is this
interrupt signal raised when writing to that register?). Such
debugging capabilities are usually provided by traditional VP
tools and help capturing many SW errors.

D. Locating the errors
 But sometimes, the bug is not there: the value of the
register is correct and the interrupt signal is properly raised as
described in the model; the problem may come from a
misinterpretation of a requirement that led to an incorrect
specification and an incorrect implementation of the behavior.
In this case, the debugging tool is not enough; it has to be
coupled with a traceability tool capable of tracing the path from
the requirement, through the specification down to the register
implementation. Such a trace would for example show that the
register could only be written during the boot mode.

Linking the VP to the IP-XACT representation helps accessing
data that is not available in the VP such as datasheet or non-
functional properties such as power, voltage or frequency.
Linking the IP-XACT representation to the requirements and
specification documents allows capturing such
misinterpretation errors that would have taken hours or days to
locate otherwise. Sometimes the error comes from a change (in
the model or in the requirement) that was not properly
propagated throughout the traceability chain.

Fig. 1. Example of links between Requirements, Specification, Design,

Documentation and test plan

IV. CASE STUDY: THE LED SYSTEM
Such advanced methodologies that mix SW debug on VP

together with Traceability of requirements down to the HW
and SW implementation has been validated on a simple
system that controls the execution of critical tasks.

We have used a system based on the tutorial defined in
[7]. It is composed of a micro controller based on an ARM
M3 processor, including simple memories, a simple
interconnect, a bank of 8 LEDS and a UART connected to a

www.embedded-world.eu

Terminal display. The system can run a RTOS and an
application that monitors the switching tasks. Each executing
task is represented by a LED; the LED is ON (highlighted)
when the task is active (i.e. running) and OFF when it is
suspended or stopped. An extra (red) LED is highlighted when
an error occurs.

A. Requirements
The LED Functional Requirements includes the lines

defined in Table I.

TABLE I. LED REQUIREMENTS (SAMPLE)

Req number Description

R-L1.1 The LED shall be used to indicate the system status.

R-L1.1.1 A flashing green or yellow LED shall indicate that the
system is running as expected

R-L1.1.2 A flashing red LED shall indicate a fault condition.

R-L1.1.3 The correct LED shall flash on and off once every
second. This flash rate shall be maintained to within 50ms.

B. Refined requirements
The system shall be based on the FreeRTOS [6] that

includes the concept of co-routines and tasks. Tasks will be
used for the Terminal display and co-routines for the LED
display. The application code running on the RTOS shall
create five flash co-routines and three tasks. One extra task
(the idle task) is responsible for launching all the co-routines.
The Table II details the mapping between the tasks and the
LEDs.

TABLE II. LED REFINED REQUIREMENTS (SAMPLE)

Req number Description

RR-L1.1 The flash co-routines control LED's zero to four.

RR-L1.2 LED five is toggled each time the string is transmitted on the
UART.

RR-L1.3 LED six is toggled each time the string is correctly received
on the UART.

RR-L1.4

LED seven is latched on when an error is detected in any
task or co-routine. The error is detected by a check function
(called by the idle task) that loads the general purpose
registers with a known value, then checks each register to
ensure the held value is still correct. As a low priority task
this checking routine is likely to get repeatedly swapped in
and out. A register being found to contain an incorrect value
is therefore indicative of an error in the task switching
mechanism.

These requirements are then further refined into low level

HW and SW specifications.

C. Refined specifications
1) HW specifications
The UART and the LED peripherals have been derived

from those defined in the TI Stellaris platform [8]. When the
SW writes to the UART Data Register (DR), an interrupt is
raised that will launch a SW interrupt routine. The LEDs are
implemented as an 8 bits register. Each bit represents a LED: a

one means highlight is ON, a zero means it is OFF. The flash
co-routines are mapped to the bits 0 to 4 and are represented
by a green LED. The UART tasks are mapped to the bits 5
and 6, represented by a yellow LED. And the error task is
mapped to the bit 7 and represented as a red LED.

2) SW specifications
To control the HW peripherals, SW drivers have to be

implemented. A sample of the LED driver is given in Fig 2.

Fig. 2. Sample of the SW driver code for the LED

These drivers access the HW registers through some
Hardware Abstraction Layer (HAL) code, usually part of the
Hardware BSP, as illustrated in Fig 3.

Fig. 3. Sample of the HAL code for the LED

The application SW specifications defining how the tasks and
co-routines are created are not described here; the focus of this
paper being the HW dependent SW.

D. VP implementation
A VP platform has been created using Imperas/OVP

SystemC models for each IP defined in the specification: an
ARM M3 instruction accurate fast processor model, a LED
controller connected to a LED display and a UART connected
to a Terminal. The Processor and the peripherals are connected
to a simple interconnect and communicate through
transactional interfaces. The UART interrupt signal is directly
connected to the ARM core Interrupt Controller.

Each SystemC IP model has been automatically packaged
in IP-XACT XML format to ease its management and reuse
over time. These IP-XACT IP blocks have then been
assembled and executed using Magillem VP assembly tool, as
illustrated in fig 4.

#define LED_BASE_ADDRESS 0x40004000
#define LED() *((volatile char *) LED_BASE_ADDRESS+4)
void ledWrite(unsigned char value) {
 LED() = value;
}

void LedInitialise(void) {...}
void LedSet(unsigned int LED, boolean value)
{
 unsigned char ucBit = (unsigned char) 1;
 vTaskSuspendAll();
 { /* atomic section */
 ucBit = ((unsigned char) 1) >> LED;
 if(! value) {
 ucBit ^= (unsigned char) 0xff;
 ucOutputValue &= ucBit;
 } else {
 ucOutputValue |= ucBit;
 }
 ledWrite(ucOutputValue);
 } /* end atomic section */
 xTaskResumeAll();
}

Fig. 4. Virtual Prototype of the LED platform

E. Links creation
Links have to be created between the VP (the design part)

and the Requirements. Note that the specification documents
have been omitted here to simplify the system. The creation of
the links can be achieved with the Magillem tools by directly
importing the Requirements and the IP-XACT representation
of the VP. Links between fragments of the requirement
document and the IP can then be easily created by simple drag
and drop of fragments of data and visualized with the tool.

For example, the LED requirement R-L1.1.2 can be linked
to the refined requirement RR-L1.4 itself linked to last bit field
of the LED HW register and it can also be linked to the error
routine on the SW side that updates the LED register.

F. Debugging the system
Now comes the exciting part of the work. When simulating

this simple system, we observe that the red LED is highlighted
after some time. The VP flexibility allows to simply putting a
breakpoint in both the SW and in the HW when the LED
register is written and stop the simulation when the red LED is
highlighted.

Thanks to the link to the requirement RR-L1.4, we can see
that the LED seven is mapped to the Error condition. But the
register value shows that the bit0 is at 1 and the bit7 is at 0. It is
very likely that either the display LEDs connected to the
register have been reversed or that on the SW side, the
mapping between the register bits and the tasks/co-routines was
reversed. More debugging demonstrated that the SW side was
the root of the error. The location of the SW error was in the
LED driver: the LedSet function was erroneously shifting right
instead of shifting left, as illustrated in Fig 5.

Fig. 5. Sample of the SW driver code for the LED

Both the SW and the HW were right. The error only shows
up when linking the two and execute the SW with the HW. A
direct pointer to the requirement could immediately separate
out the HW and the SW responsibilities, saving hours of debug
and iterations between HW and SW teams.

FUTURE WORK
Such an integrated environment with immediate impact

analysis to help debugging complex systems is even more
useful when some requirement changes or when the spec
changes or when the implementation changes (e.g. when a bug
is fixed). Of course this assumes that the links have been
properly created and that they fully cover the requirements.
Additional techniques need to be developed to automate the
creation of the links and to verify the links are complete.

CONCLUSION
This paper explained how the combination of innovative

traceability techniques with advanced VP execution
environment helps locating SW errors by tracing the
dependencies all the way through from requirements down to
the embedded system execution and vice-versa. This is the
beginning of a long avenue of developments to improve the
consistency and coherency between the functional
requirements and their implementation through early validation
on VPs.

REFERENCES

[1] SystemC IEEE 1666-2011 specification,
http://ieeexplore.ieee.org/document/6134619/

[2] IP-XACT IEEE 1685-2009 specification,
http://ieeexplore.ieee.org/document/5417309/

[3] Magillem, www.magillem.com
[4] Imperas, http://www.imperas.com
[5] Open Virtual Platform (OVP), http://www.ovpworld.org/
[6] FreeRTOS, FreeRTOS.org
[7] Real Time Application Design Tutorial, http://www.freertos.org/tutorial/
[8] Texas Instrument Stellaris LM3S microcontrollers,

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit

v void LedSet(unsigned int LED, boolean value)
{
 …
 ucBit = ((unsigned char) 1) << LED; // error was here
 …
}

