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Abstract— Historically, architectural estimation, analysis and 

optimization for SoCs and embedded systems has been done 

using either manual spreadsheets, hardware emulators, FPGA 

prototypes or cycle approximate and cycle accurate simulators.  

This precision comes at the cost of performance and modeling 

flexibility. 

Instruction accurate simulation models in virtual platforms, 

have the speed necessary to cover the range of system scenarios, 

can be available much earlier in the project, and are typically an 

order of magnitude less expensive than cycle approximate or 

cycle accurate simulators.  Previously, because of a lack of timing 

information, virtual platforms could not be used for timing 

estimation.  We report here on a technique for dynamically 

annotating timing information to the instruction accurate 

software simulation results.  This has achieved an accuracy of 

better than +/-10%, which is appropriate for early design 

architectural exploration and system analysis.  This Instruction 

Accurate + Estimation (IA+E) approach is constructed by using 

Open Virtual Platforms (OVP) processor models plus a library 

that can introspect the running system and calculate an estimate 

for the cycles taken to execute the current instruction. Not only 

can these add-on libraries dynamically inspect the running 

system estimate timing effects, they can annotate calculated 

instruction cycle timing back into the simulation and affect 

timing of the simulation.  

Keywords—RISC-V, virtual platform, instruction accurate, 

processor models, timing estimation 

I.  INTRODUCTION 

Performance and power consumption are two key attributes 
of any SoC and embedded system.  Systems often have hard 
timing requirements that must be met, for example in safety 
critical systems where reaction time is of paramount 
importance. Other systems, particularly battery powered 
systems, have power consumption limitations.   

Because of the importance of these characteristics, many 
techniques have been developed for estimation of performance 
and power consumption.  Recently, with the explosion of 
system scenarios that must be considered, this job has become 
much more difficult.   

Instruction accurate simulation has previously not been 
considered as a potential technique for timing and power 
estimation, because it is instruction accurate and does not 
model processor microarchitecture details:  there is no 
information about timing or power consumption of instructions 
and actions in instruction accurate models and simulators.  
Recently some universities, using the Open Virtual Platforms 
(OVP) models and OVPsim simulator [1], have experimented 
with adding this information into the instruction accurate 
simulation environment as libraries, with no changes to the 
models or simulation engines [2].  These efforts have shown 
great promise, with timing estimation results within +/- 10% of 
the actual timing results for the hardware for limited cases.   

We report here on the further development of this 
technique, and the extension of this technique for RISC-V ISA 
based processors.  This is critical for the RISC-V ecosystem, 
since for RISC-V semiconductor vendors to win embedded 
system sockets, their customers are going to want to know 
about the timing and power consumption of those SoCs when 
running different application software.   

II. CURRENT STATE OF THE ART 

Historically, SoC architectural estimation, analysis and 
optimization has been done using either manual spreadsheets, 
hardware emulators, FPGA prototypes, cycle approximate 
simulators or cycle accurate simulator and performance 
simulators such as Gem5 [3].  These all have significant 
drawbacks: insufficient accuracy, high cost, RTL availability 
(meaning that the technique is only available later in the project 
when the RTL design is complete), low performance, limited 
ability to support a wide range of system scenarios or are very 
complex to use and gain good results.  Table 1 provides a 
summary of the strengths and weaknesses of each technique.   

 

 

 

 

 



TABLE I.  STRENGTHS AND WEAKNESSES OF CURRENTLY USED 

TECHNIQUES FOR TIMING AND POWER ESTIMATION 

Technique Strength Weaknesses 

Manual 

spreadsheets 

Ease of use Lack of accuracy; inability 

to support estimations with 
real software 

Hardware 

emulators 

Cycle accurate High cost (millions USD); 

needs RTL; < 5 mips 

performance 

FPGA prototypes Cycle accurate High cost (hundreds of 
thousands USD); needs 

RTL 

Cycle approximate 

simulation 

Good performance Lack of accuracy; lack of 

availability of models 

Cycle accurate 
simulation 

Cycle accurate High cost (hundreds of 
thousands of USD); lack of 

availability of models 

Gem5 Microarchitectural detail A lot of work to develop a 

model of specific 

microarchitecture and to 
get realistic traces of SoC. 

 

III. INSTRUCTION ACCURATE SIMULATION 

Instruction set simulators (ISSs) have long been used by 
software engineers as a vehicle for software development.  
Over the last 20 years, this technique has been extended to 
support not only modeling of the processor core, but also 
modeling of the peripherals and other components on the SoC.  
The advantages of these simulators are their performance, 
typically hundreds of millions of instructions per second 
(MIPS), and the relative ease of building the necessary models.  
However, the simulator engines and models are instruction 
accurate, and are not built to support timing and power 
estimation.   

The performance of these simulators comes from the use of 
Just-In-Time (JIT) binary translation engines, which translate 
the instructions of the target processor (e.g. Arm) to 
instructions on the host x86 PC. This enables users to run the 
same executables on the instruction accurate simulator as on 
the real hardware, such that the software does not know that it 
is not running on hardware. Peak performance with these 
simulators can reach billions of instructions per second.  A 
more typically use case, such as booting SMP Linux on a 
multicore Arm processor, takes less than 10 seconds on a 
desktop x86 machine.   

There are also significant libraries of models available, and 
it is easier to build instruction accurate models than models 
with timing or power consumption information, or real 
implementation details.  One such library and modeling 
technology is available from OVP.  The OVP processor model 
library includes models of over 200 separate processors (e.g. 
Arm, MIPS, Power, Renesas, RISC-V), plus a similar number 
of peripheral models.  Most of these models are available as 
open source.  The C APIs for building these models are also 
freely available as an open standard from OVP.  

IV. INSTRUCTION ACCURATE SIMULATION PLUS 

ESTIMATION 

Instruction accurate simulation holds the promise of faster 
simulation performance to support examination of more system 
scenarios, plus lower cost and earlier availability.  With the 
Imperas APIs and dynamic model introspection it is easy to 
add in timing and power estimation capabilities into the 
instruction accurate simulation environment.   

The idea of adding these capabilities as libraries is the 
combination of annotation techniques and binary interception 
libraries used with JIT simulation engines.  Annotation 
techniques can be imagined as a full instruction trace which is 
then annotated with the timing or power information.  
However, just using annotation requires significant host PC 
memory, and can slow the simulation.   

Binary interception libraries are used with the Imperas JIT 
simulators to enable the non-intrusive addition of tools, such as 
code coverage and profiling, to the simulation environment.  
Combining these techniques maintains the high simulator 
performance with minimal memory costs.  This combined 
technique is being called Instruction Accurate + Estimation 
(IA+E).   

In the Imperas simulation products, which require the use 
of OVP models, it is possible to create a standalone library 
module with entry points that are called when instructions are 
executed.  This library can introspect the running system and 
calculate an estimate for the cycles taken to execute the current 
instruction, and can take into account overhead of different 
memory and peripheral component latencies. Not only can 
these add-on libraries dynamically inspect the running system 
and estimate timing affects, they can annotate calculated 
instruction cycle timing back into the simulation and affect (i.e. 
stretch) timing of the simulation.  An overview of the 
simulation architecture is shown in Figure 1.   

Fig. 1. Overview of the Imperas IA+E simulation environment.  

For processors, the instruction estimation algorithm 
includes: 

• a mixture of table look ups for simple instructions 

• dynamic calculations for data dependent instructions 

• adjustments due to code branches taken 

• taking into account effects of memory and register 
accesses 

A view of the timing estimation mechanism is shown in 
Figure 2.   
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Fig. 2.  Simplified view of the timing estimation mechanism.   

For memory subsystems and peripheral components table, 
lookup and dynamic estimation can be made and timing back 
annotated into the simulation to simulate the delay effects of 
slow memories and other components. 

With this Instruction Accurate + Estimation (IA+E) 
approach, there is a separation of processor model functionality 
and timing estimation. This means while building a functional 
model there is no need to worry about any timing or cycle 
complexity. It is only when the more detailed timing is needed 
is it necessary to add the extra timing data to enable the 
Imperas IA+E timing tools to provide cycle approximate 
timing simulation for the RISC-V processors. 

This extra timing data is added in two steps.  First, the cycle 
information is added to the library.  Second, the time per cycle, 
which is dependent upon the specific semiconductor process 
and physical implementation details, is added.   

The approach of providing the timing data as a separately 
linked dynamic program enables RISC-V processor designers 
to create a cycle approximate timing simulation for their 
specific processor implementation - without sharing any 
internal information. 

IA+E simulation performance slows down from normal 
simulation performance, with typical overhead of about 50% of 
normal performance.  Still, this puts IA+E simulation 
performance at 100-500 MIPS.   

IA+E does have some limitations.  This technique has 
currently been proven only for simple processors with a single 
core, no cache, and in-order pipeline.   

V. RESULTS 

This IA+E technique was first tested with Arm Cortex-M4 
based processors.  The results were much better than expected, 
with an average estimation error of +/- 5% as compared to the 
actual device.  The device was an ST Microelectronics 
STM32F on a standard development board, running the 
FreeRTOS real time operating system, with 39 different 
benchmark applications used.  Almost all timing estimation 
errors were within +/- 10% of actual timing values.  Figure 3 
shows these results. 

 

 

Fig. 3. Timing estimation results for IA+E simulation show average errors of 

better than +/- 5% over 39 different benchmarks for Arm Cortex-M4.   

IA+E was recently extended to support RISC-V processors, 
by using publicly available information (from the processor 
vendor's data books) to build the cycle data libraries.   

In the data below, showing processor implementations from 
Andes Technology, Microsemi and SiFive, only the cycle data 
is presented, since comparing timing for the various 
implementations would not be an accurate comparison.  Also, 
in keeping with this theme, different benchmark applications 
were used for each of the different processors.  All benchmarks 
were run with the range of compiler optimization settings, and 
estimated cycles were reported first assuming 1 cycle per 
instruction, i.e. using IA, then using the IA+E technique.  
These results are shown in Figs. 4-6. 

VI. CONCLUSIONS 

The Instruction Accurate + Estimation (IA+E) technique 
developed here has shown excellent results for timing 
estimation of in-order processors.  It also has the benefits of 
easy model building, high performance to enable examination 
of multiple benchmarks and system scenarios, and lower cost 
than other techniques.  In this paper, the IA+E technique has 
been extended to support RISC-V processors.  Further work is 
needed to apply this technique to power estimation, and to 
more complex processors.   
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Fig. 4. IA+E cycle estimation results for the Andes N25 processor.   

 

Fig. 5. IA+E cycle estimation results for the Microsemi Mi-V RV32IMA processor.   

 

Fig. 6. IA+E cycle estimation results for the SiFive E31 processor.   
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