
www.embedded-world.eu

 Cycle Approximate Simulation of RISC-V

Processors

Lee Moore, Duncan Graham, Simon Davidmann

Imperas Software Ltd.

Oxford, United Kingdom

simond@imperas.com

Felipe Rosa

Universidad Federal Rio Grande Sul

Brazil

Abstract— Historically, architectural estimation, analysis and

optimization for SoCs and embedded systems has been done

using either manual spreadsheets, hardware emulators, FPGA

prototypes or cycle approximate and cycle accurate simulators.

This precision comes at the cost of performance and modeling

flexibility.

Instruction accurate simulation models in virtual platforms,

have the speed necessary to cover the range of system scenarios,

can be available much earlier in the project, and are typically an

order of magnitude less expensive than cycle approximate or

cycle accurate simulators. Previously, because of a lack of timing

information, virtual platforms could not be used for timing

estimation. We report here on a technique for dynamically

annotating timing information to the instruction accurate

software simulation results. This has achieved an accuracy of

better than +/-10%, which is appropriate for early design

architectural exploration and system analysis. This Instruction

Accurate + Estimation (IA+E) approach is constructed by using

Open Virtual Platforms (OVP) processor models plus a library

that can introspect the running system and calculate an estimate

for the cycles taken to execute the current instruction. Not only

can these add-on libraries dynamically inspect the running

system estimate timing effects, they can annotate calculated

instruction cycle timing back into the simulation and affect

timing of the simulation.

Keywords—RISC-V, virtual platform, instruction accurate,

processor models, timing estimation

I. INTRODUCTION

Performance and power consumption are two key attributes
of any SoC and embedded system. Systems often have hard
timing requirements that must be met, for example in safety
critical systems where reaction time is of paramount
importance. Other systems, particularly battery powered
systems, have power consumption limitations.

Because of the importance of these characteristics, many
techniques have been developed for estimation of performance
and power consumption. Recently, with the explosion of
system scenarios that must be considered, this job has become
much more difficult.

Instruction accurate simulation has previously not been
considered as a potential technique for timing and power
estimation, because it is instruction accurate and does not
model processor microarchitecture details: there is no
information about timing or power consumption of instructions
and actions in instruction accurate models and simulators.
Recently some universities, using the Open Virtual Platforms
(OVP) models and OVPsim simulator [1], have experimented
with adding this information into the instruction accurate
simulation environment as libraries, with no changes to the
models or simulation engines [2]. These efforts have shown
great promise, with timing estimation results within +/- 10% of
the actual timing results for the hardware for limited cases.

We report here on the further development of this
technique, and the extension of this technique for RISC-V ISA
based processors. This is critical for the RISC-V ecosystem,
since for RISC-V semiconductor vendors to win embedded
system sockets, their customers are going to want to know
about the timing and power consumption of those SoCs when
running different application software.

II. CURRENT STATE OF THE ART

Historically, SoC architectural estimation, analysis and
optimization has been done using either manual spreadsheets,
hardware emulators, FPGA prototypes, cycle approximate
simulators or cycle accurate simulator and performance
simulators such as Gem5 [3]. These all have significant
drawbacks: insufficient accuracy, high cost, RTL availability
(meaning that the technique is only available later in the project
when the RTL design is complete), low performance, limited
ability to support a wide range of system scenarios or are very
complex to use and gain good results. Table 1 provides a
summary of the strengths and weaknesses of each technique.

TABLE I. STRENGTHS AND WEAKNESSES OF CURRENTLY USED

TECHNIQUES FOR TIMING AND POWER ESTIMATION

Technique Strength Weaknesses

Manual

spreadsheets

Ease of use Lack of accuracy; inability

to support estimations with
real software

Hardware

emulators

Cycle accurate High cost (millions USD);

needs RTL; < 5 mips

performance

FPGA prototypes Cycle accurate High cost (hundreds of
thousands USD); needs

RTL

Cycle approximate

simulation

Good performance Lack of accuracy; lack of

availability of models

Cycle accurate
simulation

Cycle accurate High cost (hundreds of
thousands of USD); lack of

availability of models

Gem5 Microarchitectural detail A lot of work to develop a

model of specific

microarchitecture and to
get realistic traces of SoC.

III. INSTRUCTION ACCURATE SIMULATION

Instruction set simulators (ISSs) have long been used by
software engineers as a vehicle for software development.
Over the last 20 years, this technique has been extended to
support not only modeling of the processor core, but also
modeling of the peripherals and other components on the SoC.
The advantages of these simulators are their performance,
typically hundreds of millions of instructions per second
(MIPS), and the relative ease of building the necessary models.
However, the simulator engines and models are instruction
accurate, and are not built to support timing and power
estimation.

The performance of these simulators comes from the use of
Just-In-Time (JIT) binary translation engines, which translate
the instructions of the target processor (e.g. Arm) to
instructions on the host x86 PC. This enables users to run the
same executables on the instruction accurate simulator as on
the real hardware, such that the software does not know that it
is not running on hardware. Peak performance with these
simulators can reach billions of instructions per second. A
more typically use case, such as booting SMP Linux on a
multicore Arm processor, takes less than 10 seconds on a
desktop x86 machine.

There are also significant libraries of models available, and
it is easier to build instruction accurate models than models
with timing or power consumption information, or real
implementation details. One such library and modeling
technology is available from OVP. The OVP processor model
library includes models of over 200 separate processors (e.g.
Arm, MIPS, Power, Renesas, RISC-V), plus a similar number
of peripheral models. Most of these models are available as
open source. The C APIs for building these models are also
freely available as an open standard from OVP.

IV. INSTRUCTION ACCURATE SIMULATION PLUS

ESTIMATION

Instruction accurate simulation holds the promise of faster
simulation performance to support examination of more system
scenarios, plus lower cost and earlier availability. With the
Imperas APIs and dynamic model introspection it is easy to
add in timing and power estimation capabilities into the
instruction accurate simulation environment.

The idea of adding these capabilities as libraries is the
combination of annotation techniques and binary interception
libraries used with JIT simulation engines. Annotation
techniques can be imagined as a full instruction trace which is
then annotated with the timing or power information.
However, just using annotation requires significant host PC
memory, and can slow the simulation.

Binary interception libraries are used with the Imperas JIT
simulators to enable the non-intrusive addition of tools, such as
code coverage and profiling, to the simulation environment.
Combining these techniques maintains the high simulator
performance with minimal memory costs. This combined
technique is being called Instruction Accurate + Estimation
(IA+E).

In the Imperas simulation products, which require the use
of OVP models, it is possible to create a standalone library
module with entry points that are called when instructions are
executed. This library can introspect the running system and
calculate an estimate for the cycles taken to execute the current
instruction, and can take into account overhead of different
memory and peripheral component latencies. Not only can
these add-on libraries dynamically inspect the running system
and estimate timing affects, they can annotate calculated
instruction cycle timing back into the simulation and affect (i.e.
stretch) timing of the simulation. An overview of the
simulation architecture is shown in Figure 1.

Fig. 1. Overview of the Imperas IA+E simulation environment.

For processors, the instruction estimation algorithm
includes:

• a mixture of table look ups for simple instructions

• dynamic calculations for data dependent instructions

• adjustments due to code branches taken

• taking into account effects of memory and register
accesses

A view of the timing estimation mechanism is shown in
Figure 2.

www.embedded-world.eu

Fig. 2. Simplified view of the timing estimation mechanism.

For memory subsystems and peripheral components table,
lookup and dynamic estimation can be made and timing back
annotated into the simulation to simulate the delay effects of
slow memories and other components.

With this Instruction Accurate + Estimation (IA+E)
approach, there is a separation of processor model functionality
and timing estimation. This means while building a functional
model there is no need to worry about any timing or cycle
complexity. It is only when the more detailed timing is needed
is it necessary to add the extra timing data to enable the
Imperas IA+E timing tools to provide cycle approximate
timing simulation for the RISC-V processors.

This extra timing data is added in two steps. First, the cycle
information is added to the library. Second, the time per cycle,
which is dependent upon the specific semiconductor process
and physical implementation details, is added.

The approach of providing the timing data as a separately
linked dynamic program enables RISC-V processor designers
to create a cycle approximate timing simulation for their
specific processor implementation - without sharing any
internal information.

IA+E simulation performance slows down from normal
simulation performance, with typical overhead of about 50% of
normal performance. Still, this puts IA+E simulation
performance at 100-500 MIPS.

IA+E does have some limitations. This technique has
currently been proven only for simple processors with a single
core, no cache, and in-order pipeline.

V. RESULTS

This IA+E technique was first tested with Arm Cortex-M4
based processors. The results were much better than expected,
with an average estimation error of +/- 5% as compared to the
actual device. The device was an ST Microelectronics
STM32F on a standard development board, running the
FreeRTOS real time operating system, with 39 different
benchmark applications used. Almost all timing estimation
errors were within +/- 10% of actual timing values. Figure 3
shows these results.

Fig. 3. Timing estimation results for IA+E simulation show average errors of

better than +/- 5% over 39 different benchmarks for Arm Cortex-M4.

IA+E was recently extended to support RISC-V processors,
by using publicly available information (from the processor
vendor's data books) to build the cycle data libraries.

In the data below, showing processor implementations from
Andes Technology, Microsemi and SiFive, only the cycle data
is presented, since comparing timing for the various
implementations would not be an accurate comparison. Also,
in keeping with this theme, different benchmark applications
were used for each of the different processors. All benchmarks
were run with the range of compiler optimization settings, and
estimated cycles were reported first assuming 1 cycle per
instruction, i.e. using IA, then using the IA+E technique.
These results are shown in Figs. 4-6.

VI. CONCLUSIONS

The Instruction Accurate + Estimation (IA+E) technique
developed here has shown excellent results for timing
estimation of in-order processors. It also has the benefits of
easy model building, high performance to enable examination
of multiple benchmarks and system scenarios, and lower cost
than other techniques. In this paper, the IA+E technique has
been extended to support RISC-V processors. Further work is
needed to apply this technique to power estimation, and to
more complex processors.

ACKNOWLEDGMENTS

The authors would like to thank Andes Technology,
Microsemi, and SiFive for access to their processor datasheets
and/or databooks.

REFERENCES

[1] Open Virtual Platforms (OVP), www.OVPworld.org

[2] Felipe Da Rosa, Luciano Ost, Ricardo Reis, Gilles Sassatelli.
Instruction-Driven Timing CPU Model for Efficient Embedded Software
Development Using OVP. ICECS: International Conference on
Electronics, Circuits, and Systems, Dec 2013, Abu Dhabi, United Arab
Emirates.

[3] Gem5, www.gem5.org

http://www.ovpworld.org/
http://www.gem5.org/

Fig. 4. IA+E cycle estimation results for the Andes N25 processor.

Fig. 5. IA+E cycle estimation results for the Microsemi Mi-V RV32IMA processor.

Fig. 6. IA+E cycle estimation results for the SiFive E31 processor.

	I. Introduction
	II. Current State of the Art
	III. Instruction Accurate Simulation
	IV. Instruction Accurate Simulation Plus Estimation
	V. Results
	VI. Conclusions
	Acknowledgments
	References

