
© 2014 Imperas Software Ltd.Page 1 Nov-14

Virtual Platform Software Simulation for Virtual Platform Software Simulation for
Enhanced MultiEnhanced Multi--core Software core Software
VerificationVerification

Simon Davidmann
Company: Imperas Software Ltd, 17 March 2014
Event: TVS – Software Testing
Location: UWE Conference Centre, Bristol

© 2014 Imperas Software Ltd. Nov-14

© 2014 Imperas Software Ltd.Page 2 Nov-14

AgendaAgenda

Background – the changing needs of embedded
product development
“Traditional” Embedded Software development
solutions
Working with Multi-core hardware and software

The next generation of Embedded Software
development systems

Example – using assertions on software
shared memory monitor

Summary

© 2014 Imperas Software Ltd.Page 3 Nov-14

The changing hardwareThe changing hardware

Multi-core [is going to be in] [is in] everything
AMP, SMP, homogeneous, heterogeneous

AMP coresSMP cores

Accelerators

© 2014 Imperas Software Ltd.Page 4 Nov-14

The changing softwareThe changing software

Layer and Layers of software

H
ar

dw
ar

e
D

ep
en

de
nt

So

ftw
ar

e
(H

D
S)

© 2014 Imperas Software Ltd.Page 5 Nov-14Page 5

The changing SW Verification The changing SW Verification
RequirementsRequirements

Hardware Dependent Software (HDS)
Most complex foundation layer

Drivers, hypervisors, assembly libraries,
Operating System

Buried problems often appear elsewhere in a
system, leading to misdirected analysis
Ripe for corner case type issues
Post development bugs hardest to fix
Testing needs to be platform centric not
application centric

Modern SoC verification is complex
SMP/AMP Multicore Interaction
Shared memory & devices
Extensive accelerators, peripherals
Complex SW/HW interaction (e.g security)
Externally authored, complex libraries

H
ar

dw
ar

e
D

ep
en

de
nt

So

ftw
ar

e
(H

D
S)

© 2014 Imperas Software Ltd.Page 6 Nov-14Page 6

Current Solutions For Early Current Solutions For Early
Embedded SW DevelopmentEmbedded SW Development

Traditional Breadboard
Limited system availability
Limited external test access
Limited internal visibility
Late in arrival

Emulation & Cycle Accurate Models
Provides reasonable verification
capability but 1000x too slow for
effective HDS verification
Hard to get started

© 2014 Imperas Software Ltd.Page 7 Nov-14

AgendaAgenda

Background – the changing needs of embedded
product development
“Traditional” Embedded Software development
solutions
Working with Multi-core hardware and software

The next generation of Embedded Software
development systems

Example – using assertions on software
shared memory monitor

Summary

© 2014 Imperas Software Ltd.Page 8 Nov-14

Virtual Platforms: Transforming Virtual Platforms: Transforming
Engineering EfficiencyEngineering Efficiency

SW vs HW development platforms
Often available earlier for engineering
Provide more powerful tooling
Easier to replicate for extended testing
Real time or faster performance

Host
Development

Machine

SW virtual
platform
(w/ OS, etc)
running on
host

SW
Development

running on
virtual platform

“Best-in-class manufacturers that make
extensive use of simulation early in the
design process hit revenue, cost, launch date,
and quality targets for 86% or more of their
products. Best-in-class manufacturers of the
most complex products get to market 158
days earlier with $1.9 million lower costs
than all other manufacturers.”
Simulation-Driven Design, Aberdeen
Group Study

© 2014 Imperas Software Ltd.Page 9 Nov-14

And Virtual Platform simulators And Virtual Platform simulators
can be very fastcan be very fast

Example speed of Imperas simulation models

© 2014 Imperas Software Ltd.Page 10 Nov-14

And booting OS can be fast tooAnd booting OS can be fast too

Boot Linux on ARM Cortex-A15x4 = 6 seconds on Win7 laptop
Runs simulated Linux applications at 100s of MIPS

ARM Linux boot

© 2014 Imperas Software Ltd.Page 11 Nov-14

ARMv8 simulation using parallel ARMv8 simulation using parallel
hosthost--cpucpu resourcesresources

Local Memory

Host Processors

Simulation

x86 x86 x86 x86

Advanced parallel
synchronization algorithm for
SMP, AMP and hardware
accelerators
Transparent operation to user:
No model, tool, software
changes
Total performance on
benchmarks recorded up to

16 Billion ins/sec
Performance advantage 15x
over nearest commercial
alternative

QuantumLeap

© 2014 Imperas Software Ltd.Page 12 Nov-14

Software Quality is Directly Software Quality is Directly
Proportional to Test SpeedProportional to Test Speed

Faster Tests

More Tests Run

More Bugs Found

Greater Quality

Less Time

© 2014 Imperas Software Ltd.Page 13 Nov-14

Virtual Platforms: The Right Virtual Platforms: The Right
Performance to Capability TradePerformance to Capability Trade--offoff

Page 13

Host
Development

Machine

SW virtual
platform
(w/OS, etc)
running on
host

SW
Development

running on
virtual platform

Virtual Platforms (simulators) with
Instruction Accurate (IA) models
provide:
Pre-prototype verification
Effective verification access
Reasonable execution performance

However, Virtual Platforms require a
simulation foundation to be effective
Standardized modeling technology
Services for verification tools
Tool firewall for execution integrity
Make use of host parallel resources for
maximum performance

© 2014 Imperas Software Ltd.Page 14 Nov-14

OVPworld.org

OVP Standardized Modeling OVP Standardized Modeling
InfrastructureInfrastructure

Page 14

Model Library
Extensive (200+), comprehensive

open source model collection

OVP Modeling
Easy-to-code modeling APIs

Environment
Interfaces to SystemC, GDB, etc

Reference Simulator: OVPsim
Easy access simulator for running

models

Model Library
Extensive (200+), comprehensive

open source model collection

OVP Modeling
Easy-to-code modeling APIs

Environment
Interfaces to SystemC, GDB, etc

Reference Simulator: OVPsim
Easy access simulator for running

models

Open Virtual Platforms™ (OVP™) standardized set of
Modeling APIs for platforms, cpu models and

behavioral peripheral models

© 2014 Imperas Software Ltd.Page 15 Nov-14Page 15 11/7/2014

Simulator Architecture to Simulator Architecture to
provide services for Verificationprovide services for Verification

Leveraging JIT Code Morphing simulation algorithms for highest possible
performance
Modeling APIs allow processor/platform functionality to be described
efficiently while maintaining easy modeling environment
Imperas technology allows verification and debug tool code to be combined
with model and software execution efficiently and unobtrusively

ProcessorProcessor
Behav
model
Behav
model

ICM
API
ICM
API

VMI
API
VMI
API

PPM
API

PPM
API

BHM
API

BHM
API

PeriphPeriph

Platform Model

SystemC
(& TLM2)

Kernel

JIT Code MorphingJIT Code Morphing

B
in

ar
y

In
te

rc
ep

t

Software Stack

OS / DriversOS / Drivers
MiddlewareMiddleware
ApplicationsApplications

Custom &
OS/CPU

Specific Tool
Libraries

Custom &
OS/CPU

Specific Tool
Libraries

GDBGDB

MemoryMemory

Host
Machine

Imperas
Simulator

Enables
extensibility

© 2014 Imperas Software Ltd.Page 16 Nov-14

Traditional Debug (1D)Traditional Debug (1D)

Debugging application code running on simulated
embedded processor

Trace
e.g.: instructions, source lines, register changes

GDB-like debugger
Examining registers, variables, source…
Single step, breakpoints, …
GUI

© 2014 Imperas Software Ltd.Page 17 Nov-14

Spatial & Temporal Debug (2D)Spatial & Temporal Debug (2D)

Spatial
For AMP/SMP – examine applications on multiple cores
across the chip
Debugging peripheral/behavioral models in context of
software running on the embedded cores

Programmers view, or model source

Temporal
Considering the sequences of events over time

Sequential assertions, breakpoints
Using conditioning events to prime breakpoints

e.g.: break on next ISR after character input to UART

© 2014 Imperas Software Ltd.Page 18 Nov-14

LayerLayer--Aware Debug (3D)Aware Debug (3D)

OS Aware

Processor Aware
Platform (e.g. Drivers)
Middleware or Bare Metal

Memory Region Watchpoint

Trace Schedule Command

Layer-aware Stratified Analysis
Connecting commands through

different layers for activity analysis

OS/CPU-Aware Focused Debug
Commands analyze layer operation while

excluding irrelevant detail
(easier to view 1000 tasks operations than

1 Billion instructions trace)

Processor Write Access

Layered verification matches
layered software architecture
Simulator must allow focus and

stratification

Model Source Aware

Application

TRC (SCHD) 242131778: 'mipsle1_TC0': scheduler switched
('khelper')
TRC (TASK) 242137813: 'mipsle1_TC0': do_execve called f
TRC (EXEC) 242137813: 'mipsle1_TC0': do_execve called f
filename=/sbin/hotplug with:
TRC (EXEC) 242137813: 'mipsle1_TC0': argv virt=0x80
TRC (EXEC) 242137813: 'mipsle1_TC0': argv virt=0x80
TRC (EXEC) 242137813: 'mipsle1_TC0': envp virt=0x80
TRC (EXEC) 242137813: 'mipsle1_TC0': envp virt=0x80
"PATH=/sbin:/bin:/usr/sbin:/usr/bin"

© 2014 Imperas Software Ltd.Page 19 Nov-14

Layered Tool Suite Layered Tool Suite
Capabilities (3D)Capabilities (3D)

Simulator Break on messages TCL callbacks Full GDB command set

Trace console
Trace execve
Trace scheduler
Trace tasks
Trace module loads
Trace printk

Operating System

Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

Bare Metal Apps & Middleware

Bus connectivity view
Peripheral register view
Peripheral src debugger
Processor freeze control
Trace peripheral access
Memory coverage
Shared memory checks

Platform (e.g. Drivers)

Multi Processor Debug
Address space introspection
Virtual2physical mapping
Print CP registers
TLB dump
Break on exception
Break on mode
Break on register change
Break on instruction
Instruction coverage
Instruction profiling
Instruction fault Injection
Cache analysis

Trace coprocessor registers
Trace TLB trace exceptions
Trace modes
Trace service calls
Trace hypervisor calls
Trace secure monitor calls
Trace MT/MP extensions
Trace system calls
Trace timer
Trace cache instructions
Trace SIMD extensions
Trace instruction
Trace register change

Processor
Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

Rich set of commands to operate at all layers of abstraction

© 2014 Imperas Software Ltd.Page 20 Nov-14

AgendaAgenda

Background – the changing needs of embedded
product development
“Traditional” Embedded Software development
solutions
Working with Multi-core hardware and software

The next generation of Embedded Software
development systems

Example – using assertions on software
shared memory monitor

Summary

© 2014 Imperas Software Ltd.Page 21 Nov-14

Example 1 Example 1 -- AssertionsAssertions
Altera Cyclone V Cortex A9MPx2 (AMP Linux/Altera Cyclone V Cortex A9MPx2 (AMP Linux/MicriumMicrium, ,
SMP Linux) and Nios II (Linux)SMP Linux) and Nios II (Linux)

ARM®
Cortex™-A9MPx2

UART0

Timer0

SRAM

System
Manager

L2 Cache Controller

UART1
Ethernet

DMA

Timer1

Timer2

Timer3

Reset Manager

Imperas SmartLoader

jtag_uart

Timer_1ms

Memory

uart.s1

sysid

Flash
Controller

Ethernet
MAC

© 2014 Imperas Software Ltd.Page 22 Nov-14

Verification challengesVerification challenges……

OS Porting, Bring Up and Verification on Altera
Cyclone V SoC FPGA

1) Linux boot on single core ARM Cortex-A9
2) SMP Linux boot on dual core ARM Cortex-A9
3) RTOS boot on single core ARM Cortex-A9
4) AMP boot on dual core ARM Cortex-A9
5) Linux boot on single core Nios II
6) SMP Linux boot on dual core ARM Cortex-A9

plus Linux boot on Nios II

© 2014 Imperas Software Ltd.Page 23 Nov-14

Assertions:Assertions:
Memory Access MonitorMemory Access Monitor
Accelerates AMP Platform DebugAccelerates AMP Platform Debug

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008
Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c
Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010
Warning (AMPCHK_MRV) cpu_CPU1: AMP read access violation in Linux memory area. PA: 0x00000020 VA: 0x00000020

//
// Define watch areas for memory and peripherals defined in the platform
//
memWatchT amcWatch[] = {
// name watchLow watchHigh allowedCPUs

{ "Linux memory", 0, 0x2fffffff, LINUX_CPU },
{ "uCOS memory", 0x30000000, 0x31ffffff, UCOSII_CPU },
{ "gmac0", 0xff700000, 0xff700fff, LINUX_CPU },
{ "emac0_dma", 0xff701000, 0xff701fff, LINUX_CPU },
{ "gmac1", 0xff702000, 0xff702fff, LINUX_CPU },
{ "emac1_dma", 0xff703000, 0xff703fff, LINUX_CPU },
{ "uart0", 0xffc02000, 0xffc02fff, LINUX_CPU },
{ "uart1", 0xffc03000, 0xffc03fff, UCOSII_CPU },
{ "CLKMGR", 0xffd04000, 0xffd04fff, LINUX_CPU },
{ "RSTMGR", 0xffd05000, 0xffd05fff, LINUX_CPU },
{ "SYSMGR", 0xffd08000, 0xffd08fff, LINUX_CPU },
{ "GIC", 0xfffec000, 0xfffedfff, LINUX_CPU },
{ "L2", 0xfffef000, 0xfffeffff, LINUX_CPU },
{ 0 } /* Marks end of list */

};

Memory access monitor is just C code, loaded into simulation environment
When simulation is run, monitor produces warning if memory access rules are violated

© 2014 Imperas Software Ltd.Page 24 Nov-14

Summary of verification exampleSummary of verification example
1) Linux boot on single core ARM Cortex-A9

Bug found in Linux kernel preemptive scheduling
Linux boots and runs, but does not switch tasks properly
Not observed in previous virtual platform (different virtual platform
vendor) using much slower model of ARM Cortex-A9MPx2

Could not run multiple applications for long enough simulation to observe
the bug

2) SMP Linux boot on dual core ARM Cortex-A9
OK – no problems found

3) RTOS boot on single core ARM Cortex-A9
Bugs found and fixed in GIC register accesses using OS-aware tools

4) AMP boot on dual core ARM Cortex-A9
Bug found in Linux accesses of GIC registers
Bugs found in RTOS access of Linux’s reserved memory

5) Linux boot on single core Nios II
No problems found

6) SMP Linux boot on dual core ARM Cortex-A9 plus Linux boot
on Nios II

No problems found

© 2014 Imperas Software Ltd.Page 25 Nov-14

SummarySummary

Simulation is necessary but not sufficient
Fast simulation finds more bugs

Making use of multi-core host is even better

Trace, temporal, and multi-core debug are
essential for AMP/SMP systems
‘Layer-aware’ analysis makes debug manageable

Allows focus at different levels of abstraction
Ability to extend functionality and write own tools
are the key to providing efficient development
environments

© 2014 Imperas Software Ltd.Page 26 Nov-14

ConclusionsConclusions
It is inevitable that simulation will form the basis
of the next generation of embedded software
development methodology
Ensure your chosen simulator is fast, has a
standardized modeling capability, and has the
ability to include integrated advanced tools
2D and 3D verification, analysis and debug tools
are essential for multi-core designs
To find the most complex bugs and ensure
product quality an advanced verification
approach is needed using layered, customizable
tools

© 2014 Imperas Software Ltd.Page 27 Nov-14

Thank youThank you

For more modeling/model information
www.OVPworld.org

For technology/product information
www.imperas.com

Questions?

http://www.ovpworld.org/
http://www.imperas.com/

	Agenda
	The changing hardware
	The changing software
	The changing SW Verification Requirements
	Current Solutions For Early Embedded SW Development
	Agenda
	Virtual Platforms: Transforming Engineering Efficiency
	And Virtual Platform simulators can be very fast
	And booting OS can be fast too
	ARMv8 simulation using parallel host-cpu resources
	Software Quality is Directly Proportional to Test Speed
	Virtual Platforms: The Right Performance to Capability Trade-off
	OVP Standardized Modeling Infrastructure
	Simulator Architecture to provide services for Verification
	Traditional Debug (1D)
	Spatial & Temporal Debug (2D)
	Layer-Aware Debug (3D)
	Layered Tool Suite Capabilities (3D)
	Agenda
	Example 1 - Assertions �Altera Cyclone V Cortex A9MPx2 (AMP Linux/Micrium, SMP Linux) and Nios II (Linux)
	Verification challenges…
	Assertions:�Memory Access Monitor�Accelerates AMP Platform Debug
	Summary of verification example
	Summary
	Conclusions
	Thank you

