
System Level Virtual Prototyping becomes a reality with
OVP donation from Imperas.

Brian Bailey – EDA Consultant

Abstract
For many years, Electronic System Level (ESL) design and verification has been on the
cusp of widespread adoption, but never seems to get there. Universities and companies
claim to have the necessary breakthrough only to see the technology sit there for years or
the company to hobble along without ever really becoming a success. Is this because ESL
is failing to deliver on the promises or that the products are flawed? Is it because the
preconceived notion of ESL is wrong? In this whitepaper the reasons behind this are
investigated and the roles of a System Level Virtual Prototype (SLVP) will be discussed.
Imperas Inc. recently announced their Open Virtual Platforms (OVP) initiative which
may provide the missing piece of the puzzle to jump start successful commercial
deployment of ESL flows.

Introduction
Electronic Design Automation (EDA) flows are built on the fundamental premise that
models are freely interchangeable amongst vendors and have interoperability amongst
them. This means that models can be written or obtained from anywhere and it is known
that they will work together and be accepted by any vendor’s tools for simulation,
analysis, synthesis or for any other purpose supported by the model. While this seems
like a simple goal, it has been completely elusive in the world of ESL. We have neither
model interoperability nor independence between model and tool. Because of this, it is
almost impossible to put together complete ESL flows today, and thus ESL adoption
remains patchy at best, and often derided.

However, there are big changes happening in both the hardware and software worlds that
will soon make it impossible to construct systems without an abstract model. In the
hardware world, the large scale adoption of reuse means that larger systems are being put
together like a Lego system. At the same time, processor complexity has hit a wall
created by diminishing performance gains at the expense of huge power increases, such
that most systems are now utilizing multiple simpler heterogeneous processors rather
than one central processor. Much of the system functionality comes from software and
this continues to grow as before, but now has to deal with the transition to a multi-
processor world as well. These changes, on both sides of the system, mean that we cannot
continue for much longer without a viable system level model on which this functionality
and architecture can be designed and verified.

© 2008 Brian Bailey Consulting Page 1 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

Historical Perspective

Hardware-software co-verification

For the past decade there have been attempts to bring the hardware and software
communities together by providing virtual models of the hardware that could be used for
software development and verification. Perhaps the most successful of them was
Seamless1 from Mentor Graphics which substituted Instruction Set Simulator (ISS)
models for each of the processors and integrated them into a conventional RTL
simulation environment. This provided a low level virtual prototype that was useful to the
software developers since it provided them with something that looked very much like
their familiar IDE and debugger and at the same time provided the hardware engineers
with their traditional view of the system, including waveforms. This solution was found
to be very good for driver debug and integration but did not have sufficient performance
for much else. The Seamless product also included a number of performance boosters
that virtualized the host memory system and this extended its usage into some low level
OS areas2. Fundamentally though, Seamless is a cycle accurate RTL virtual prototype
that is quickly bogged down by any activity within the hardware simulator. In later years
faster models replaced the RTL models, such as C or SystemC models3 moving it into the
realm of cycle approximate execution. This provided a much needed performance boost
but it still meant that complex systems operated too slowly, making it unsuitable for
mainstream software usage. Other companies have tried similar strategies, but with
similar limitations to performance and ultimately limited success. While this bottom up
product development strategy has come a long ways, it has not advanced fast enough and
at the same time the rapidly rising complexity of systems and the introduction of multi-
processor systems mean that this will never be the answer to the more general problem.

SystemC prototypes

The industry has spent considerable time and effort on the construction of virtual
platforms based on SystemC. Examples of this are platforms created and proliferated by
CoWare4 and the proposed work project under Eclipse5 (Virtual Prototyping Platform
(VPP). These prototypes provide the hardware engineer with a flexible and adaptable
platform on which bus traffic, power, performance and many other attributes of an
implementation can be analyzed. These models are specifically intended for hardware
architecture exploration. While much faster than the RTL prototypes already discussed,
they are still at performance levels that keep them in the domains of hardware verification
and firmware development. They are much too slow for software application
development.

In addition, SystemC has failed to solve the model interoperability problem, something
that the Transaction level Modeling (TLM) group of OSCI has been trying to rectify for
quite some time now. Their latest attempt, which is still a long way from solidification,
has failed to impress many in the industry, calling it “too little too late”. In addition, this

© 2008 Brian Bailey Consulting Page 2 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

proposed standard only addresses memory mapped interface which limits its ability to
define a complete system level prototype.

Other companies, such as VaST Systems6 and Virtutech7 have forsaken the standards
arena and used custom languages and tools to create faster models of the processors,
memory systems and some aspects of the hardware. While they have successfully created
prototypes with much higher performance, they suffer from the problems of model
availability. Unless they write the models, it is unlikely that others will, making this more
of a consulting and services model than a realistic tools business. The performance of
such a complete system model is still not at a level suitable for applications development,
but they have attempted to maintain as much cycle accuracy as possible, making it ideal
for driver and OS development work, where such accuracy may be necessary. Another
compromise is that these models assume working hardware and do not provide much in
the way of visibility into the hardware models, making it less suitable for HW/SW
debugging or system level analysis.

ESL Unifiers

As previously stated, one of the principle goals of proposed ESL flows has been to unify
the design and development of hardware and software8. A unified flow would allow
better design space exploration and enable tradeoffs in the domains of performance,
power and flexibility. Most of the research into this area has concentrated on the
automation of the hardware flow – following the lead of the migration to RTL where
synthesis clearly became the central and most profitable aspect of the flow. But it is not
clear that this will be the case for ESL. The application space is so broad that it appears to
defy any single implementation path.

There is much more commonality in the needs for verification, even though there are
multiple sets of users, each of which has a somewhat different set of requirements. The
principle users are hardware developers and architects, the hardware verification team,
system architects and the software team. The hardware teams and timing specific driver
development tasks require models that closely match the implemented timing. Therefore
the models must match or model the underlying architecture of the implementation.
These users are adequately served by the solutions in place today and have already been
discussed. The system architects – who are trying to define the optimal architecture for
the hardware – do not need such detailed timing information, but they do need enough to
be able to estimate performance and identify bottlenecks. This is a small market and one
that few EDA companies have had success in pursuing, partly because nobody has really
worked out how much detail and accuracy is needed. For the most part the software team,
doing applications development, does not need much in the way of timing information.
As each processor is clocked, time advances and so for each program thread, events will
advance in the correct order. For multi-processor applications to work reliably, they must
perform synchronization that does not depend on exact timing. Exact timing cannot be
guaranteed in an embedded system, even when fully implemented, if any type of caching
or resource sharing is used. If this does not include all systems today, then the addition of
external events or timers can put systems into this class. Because of this, software should

© 2008 Brian Bailey Consulting Page 3 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

never be written to depend on specific timing and so a system level model for the
software community can dispense with timing altogether, relying instead of sequential
order of execution and proper synchronization between threads. Synchronization is
performed using semaphores, handshakes or a number of other mechanisms that ensure
that software threads that need to communicate are in the necessary state for the exchange
of data.

Changing Needs

Complexity

As time progresses, we are concerned not so much with the function of a block or an
isolated algorithm, but of the control and coordination of many of these working together
to form a complete, multi-function system. All this additional capability inevitably leads
to complexity and it has been stated that complexity is primarily driven by
communications. In other words, more functionality that is independent does not
necessarily mean extra complexity, but then that does not create the same level of
usability. It is when tasks start to coordinate and communicating with each other, that
additional complexity is seen. In this regard it follows Metcalfe’s law9 in a strange way.
Metcalfe’s law of the Internet states that the usefulness of a network is proportional to the
square of the number of users. In a similar way, total system complexity appears to be
proportional to the square of the number of users, or in this case, independent nodes on
that network. Each of these nodes is able to communicate with each of the others and to
collaborate to perform the total function. Also by implication, each of those nodes are
performing an independent task or coordinating with others to fulfill a more complex
task. With the advent of multi-processor SoCs, software has now become truly multi-
nodal since threads can execute in a fully concurrent manner and interact with each other
in real time.

It has been shown many times that the human mind can only deal with a certain number
of items at one time. While this number may vary slightly between individuals, it stays
constant for each, independent of the abstraction of those items. Thus as the number of
nodes in a system increases it quickly gets beyond the ability of any individual to keep
track of what each is doing and the ways in which they communicate. Thus models are
needed to encapsulate these behaviors and the communications between them and present
this information to the user in a way in which they can easily focus on a few objects in
order to analyze their behavior, performance or their use of resources. The other blocks
may remain hidden unless they begin to impact the current investigation.

Software needs

It has often been said that software engineers do not need models or prototypes of the
hardware. While this may have been true for the simple applications of the past, where
cross compiling the code onto the host was quick and easy, it is most certainly not true
for code that has been developed to run on multi-processors. Even though current

© 2008 Brian Bailey Consulting Page 4 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

desktops now have 2 or 4 processors, they provide a less reliable view into how the
software would operate or perform on the actual embedded hardware, which may have
special communications between the processors, or require heterogeneous processors.
They thus need a much more accurate prototype on which to investigate the
communications and synchronization of this new type of software application. Consider a
network-on-a-chip (NOC). With this kind of chip, there are many identical processors
and attached to each processor is a communications router. These routers are then
connected in a regular structure, such that each processor can communicate directly with
its neighbors, but must go through multiple routers in order to communicate with others
processors further away from it. This structure of the communications needs to be
modeled and analyzed in order to locate possible inefficiencies or areas of congestion.

At the other end of the scale, many companies utilize physical prototypes to conduct
software verification. While these operate at close to real time speeds and have very
accurate timing, it is basically too late in the development cycle such that problems found
in the software cannot be reflected by necessary changes in the hardware. This leads to
inappropriate fixes in the software or compromises in functionality or performance of the
complete system. With the introduction of multi-processor systems, this solution is also
being tested in other ways since it is difficult to see what each processor is doing in real-
time and operations such as single stepping are almost impossible. What is needed is a
solution that provides the same level of performance, but is available early in the design
cycle. This necessitates an abstract model of the hardware that can enable realistic
execution of the software. However – it must be able to do this at close to real time
speeds in order to be acceptable.

Accuracy and Timing

One of the most difficult things for hardware designers to get over is the level of timing
accuracy necessary in a model. If for a moment we conceive of a situation where the
hardware and software are going to be designed and developed alongside each other, then
we must have models available long before the RTL has been written. The software
engineers may need to look at the traffic patterns created by their algorithms and tweak
the hardware or software to accommodate the needs. It may be decided that certain
decisions that were initially made do not hold up to closer examination and need to be
changed. This cannot happen if a lot of time and energy has already been in invested in
the details of implementation. So if hardware has not yet been implemented, how can we
know the exact timing? The only thing that can be shown is that it meets the
requirements. That is one of the purposes of a system level virtual prototype – to work
out the timing necessary and other details of the architecture long before they are frozen.
Thus timing is an artifact of implementation, and the lack of timing in the early stages of
a project does not imply inaccuracy, just the degrees of freedom currently left in the
design process.

© 2008 Brian Bailey Consulting Page 5 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

Instruction accurate

OVP10 states that their processor models are instruction accurate. This statement requires
a little investigation. In the realm of ISS models, they have usually been defined as
instruction accurate or cycle accurate. The instruction accurate models are approximately
timed in that they claim to, on most occasions, execute each instruction using the correct
number of clock cycles and they perform their I/O operations at sort of the right place
within the instruction. The exact cycles on which things happen are not guaranteed. That
is what is promised with cycle accurate models. However, very few cycle accurate
models exist and most of them are really cycle approximate even though they claim
otherwise. When OVP talks about instruction accurate, they mean this in the purely
functional space and not in the behavioral space.

Function and behavior
This industry gets itself into so much trouble because of its loose use of terms and the
above discussion is one of those. So please excuse a little digression. Functional models
and behavioral models are strictly defined in the industry standard taxonomy11. To cut a
long story short, a functional model does not include timing, although it may include
sequence. A behavioral model includes timing although the level of detail of the timing is
not defined. Both models may exist at any level of abstraction. Thus an ISS is a
behavioral model. RTL and gate-level models are also behavioral models at different
levels of abstraction. The OVP models are functional models. When they claim that they
are instruction accurate, it means that the registers hold the correct values at the end of
each instruction and create the right side effects from executing that instruction. They
progress one instruction at a time and do not know anything about multi-execution
pipelines, out of order execution or anything of those sorts. When an OVP platform is put
together, each processor will advance one instruction at a time, as will any other
processors in the platform. They may operate at different instruction frequencies, but the
exact timing relationship between them has no conceptual meaning. When they attempt
to use a shared resource, such as a memory, the model will arbitrate the access to the
model and ensure that each transaction is conducted in a safe and repeatable manner.
However, the order in which those access happen cannot be guaranteed. Thus if you have
an application that depends on that level of detail, then an OVP model, or more broadly a
functional model or even an approximately timed behavioral model is not for you.

Open Virtual Platforms (OVP)
The EDA industry has complained that the free availability of the SystemC simulator
source code from the Open SystemC Initiative (OSCI) has fatally damaged the ability for
commercial companies to make money from virtual platforms. This in turn means that
few people outside of the Universities have much interest in extending or improving its
capabilities. Any changes made to the OSCI kernel are treated with suspicion and
customers are not willing to spend much for those improvements – be they speed or
capabilities. In addition, SystemC failed to solve the model interoperability problem,
something that the Transaction level Modeling (TLM) group has been trying to rectify for
quite some time now as discussed earlier.

© 2008 Brian Bailey Consulting Page 6 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

Imperas12 has taken a different approach with OVP and OVPsim. First they have made
the interface, which addresses the model interoperability problem, the primary entity that
they are making public. Along with it, they are seeding the market with a number of
models that demonstrate the capabilities of the interface. To build and debug models, a
simulator must also be available and Imperas has provided this, but only in executable
form and only for the Windows platform. This free simulator is very much like the early
version of Verilog that Cadence made openly available to everyone so they could develop
models, interfaces or bolt-on tools for it. In the case of Verilog, the free simulator had
dramatically lowered performance, but given that one of the prime motivations for OVP
is performance, creating a low performance free simulator would be counter intuitive.
The OVP website states that even higher performance is available from their simulator on
other platforms, such as Linux, and that the free version does not contain features such as
a multi-processor debugger – something that will be key to the development and
verification of the next generation of platforms. It would thus appear as if Imperas has
thought through the objectives and motivations for their donation of OVP.

OVP Basics

OVP is made up of four C interfaces: ICM for creating platforms, VMI for processors,
BHM for behavioral blocks and PPM for peripherals. These interfaces are depicted in
Figure 1.

Figure 1: OVP Interfaces

 ICM is the interface that ties together the basic blocks of the system, such as
processors, memory sub-systems, peripherals and other hardware blocks. In this regard it
is similar to the component construction that is done by SPIRIT13 based tools. The
difference is that SPIRIT provides meta-data about the blocks and the interfaces between
them, but this itself is not executable in any way. The ICM interface is a C interface that

© 2008 Brian Bailey Consulting Page 7 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

when compiled and linked with those of each of the models and some object files
produces an executable model. Given that it is based on standard C code, any C compiler
can be used to create the model. Imperas has a commercial tool that will do the
conversion from SPIRIT to the ICM model. In addition, the ICM interface allows
memory images to be defined for the start of simulation. That means that programs or
data can be pre-loaded into the system model.

 Processors in OVP are not ISS models. While the performance of ISS models has
increased tremendously over the past few years, they are still limited to a million
instructions per second (MIPS) at best and in many cases can be as slow as a few tens of
thousands of instructions per second. This is too slow for software development and
debug, which must be within about a factor of 10 of real-time. With embedded processors
typically operating in the 1 GHz range, that means ISS models are orders of magnitude
away from the desired performance levels. VMI is the processor interface, allowing the
processor model to communicate with the simulation kernel and the other components of
the system. In addition VMI is the heart and soul of the high performance execution
provided by OVP. OVP uses a code morphing approach which is coupled with a just-in-
time (JIT) compiler to map the processor instructions into those provided by the host
machine. In between are a set of optimized opcodes into which the processor operations
are mapped, and OVPsim provides fast and efficient interpretation or compilation into the
native machine capabilities. This is very different from the traditional ISS approach
which interprets every instruction. The software community has been using these
techniques14 for quite some time with impressive results and it appears that Imperas has
done what we have seen many times in the past – that of migrating a successful software
technique into the hardware design world. Another capability of VMI is to allow a form
of virtualization for capabilities such as file I/O. This allows direct execution on the host
using the standards libraries provided.

Extensible processors, such as those from Tensilica15, are becoming a fixture in
many SoCs. These call for a different type of processor model, where the core can be
provided by the vendor, and the user has the ability to extend the instruction set to match
the needs of their application. These extensions can also be added using the VMI
interface. Thus it is possible to provide a base OVP model that is user extensible.

 PPM, the peripheral modeling interface, is very similar to the fourth interface
BHM, which is intended for more generalized behaviors. These models run in a second
portion of the simulator that is called a Peripheral Simulation Engine (PSE).
www.OVPworld.org states that “this is a protected runtime environment that cannot crash
the simulator”. It does this by creating a separate address space for each model and
restricts communications to the mechanism provided by the API. The principle difference
between the two interfaces is that the PPM interface understands about busses and
networks. It is thus similar in terms of functionality with the OSCI TLM interface
proposal. The BHM is more like a traditional behavioral modeling language with
processes activation, and the ability to wait for time or a specific event. This can handle
more general forms of communications and thus provides the piece that TLM is missing.

© 2008 Brian Bailey Consulting Page 8 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

OVP models the bus as a communications fabric but does not consider it to be a shared
resource. In that respect all connections are pure one-to-one communications channels
with their memories and peripherals. If bus arbitration was necessary, it probably means
that you have multiple masters on a single bus, and you may need to model the bus as a
block in the system. However, this goes back to the previous discussion about why you
would care about the exact traffic patterns at this stage in the design. Perhaps more
important would be to see the general traffic levels on each bus, and be able to identify
the peaks. These could then be investigated further to see what can be changed to even
them out, or to decide on scheduling or priority issues as part of the implementation.

Playing nice with other simulators

Playing with legacy models is always a necessity when introducing a new environment.
Normally, simulators tend to want to be masters and can call into other models or
simulators. This creates a conflict when two simulators need to be bolted together
because neither of them really wants to relinquish control. Imperas has taken the opposite
stance saying that they are a slave and thus callable from other environments – such as
SystemC. The reverse is not true. OVPsim cannot call a SystemC model, something that
is perhaps quite natural since the calling of SystemC would bring the entire simulator
performance back down to the very thing it is trying to replace. On the other hand, if
someone has a SystemC platform today, substituting part of the system with an OVP
model may bring about a large performance gain in relative terms. However, at the end of
the day, Amdahl’s Law tells us that we get diminishing returns dominated by the slowest
running piece of the entire system, and thus even one SystemC model will make the
system crawl along at the rates that we currently see and have been deemed unacceptable
by the software development community.

Example
Several processor models, include those from ARM, MIPS and the OpenCores OR1K are
available on the OVPWorld website along with prepackaged demos of them. One of the
demos combines multiple heterogeneous cores together. Imperas has also made the free
simulator available on-line so that other people can begin to create platforms or models of
their own. Figure 2 shows the performance results that they obtained for each of the cores
running a number of different benchmarks.

Figure 2: OVP performance (on 3GHz PC host)

© 2008 Brian Bailey Consulting Page 9 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

Conclusions
OVP has the potential to provide the first true system-level virtual prototype that is
capable not just as a platform for hardware development, but also for software
development. That means it could be the first general purpose ESL modeling system that
will form the cornerstone of complete ESL flows into both the hardware and software
communities. While this has been done in specialized areas before, such as DSP design, it
has never been solved in the more general case. Imperas has enabled, but not destroyed
the commercial market for these prototypes, which means that it could get a lot more
commercial attention than SystemC has garnered. If successful, it will also have
addressed the model interoperability problem, and for that the entire industry should be
thankful.

References

1 Klein. Hardware Software co-verification. Mentor Graphics white paper.
http://www.mentor.com/products/fv/techpubs/
2 Harris, Stokes, Klein. Executing an RTOS on simulated hardware using co-verification.
Mentor Graphics white paper. http://www.mentor.com/products/fv/techpubs/
3 Andrews. Managing design complexity thorugh high-level C-model verification.
http://www.mentor.com/products/fv/techpubs/
4 Serughetti. Virtual Platforms for Software Development -- Adapting to the Changing
Face of Software Development. Coware white paper.
5 Eclipse Virtual Prototyping Platform (VPP) - http://www.eclipse.org/proposals/vpp/
6 Hellestrand. Systems Architecture:
The Empirical Way - Abstract Architectures to ‘Optimal’ Systems. VaST white paper.
http://www.vastsystems.com/docs/EmpiricalSystemsArchitecture20050722Pub.pdf
7 Simics from Wikipedia. http://en.wikipedia.org/wiki/Simics
8 Bailey, Martin, Piziali. ESL Design and Verification. A prescription for Electronic
System Level methodology. Elsevier 2007
9 Wikipedia, Metcalfe’s Law - http://en.wikipedia.org/wiki/Metcalfe's_law
10 OVP World website. http://ovpworld.org
11 Bailey, Martin, Anderson. Taxonomies for the development and verification of digital
systems. Springer 2005
12 Imperas Inc website. http://imperas.com
13 The SPIRIT Consortium. http://www.spiritconsortium.org/home
14 John Aycock, A Brief History of Just-In-Time. ACM Computing Surveys, Vol. 35, No.
2, June 2003, pp. 97–113
15 Tensilica whitepaper: Configurable Processors: What, Why, How?
http://www.tensilica.com/products/WP_config.htm

© 2008 Brian Bailey Consulting Page 10 of 10
 White Paper: System Level Virtual Prototyping & OVP – June 2008

http://www.mentor.com/products/fv/techpubs/
http://www.mentor.com/products/fv/techpubs/
http://www.mentor.com/products/fv/techpubs/
https://coware.market2lead.com/go/coware/060518wp164212738
https://coware.market2lead.com/go/coware/060518wp164212738
http://www.eclipse.org/proposals/vpp/
http://www.vastsystems.com/docs/EmpiricalSystemsArchitecture20050722Pub.pdf
http://ovpworld.org/
http://imperas.com/
http://www.spiritconsortium.org/home

	Abstract
	Introduction
	Historical Perspective
	Hardware-software co-verification
	SystemC prototypes

	ESL Unifiers

	Changing Needs
	Complexity
	Software needs
	Accuracy and Timing
	Instruction accurate
	Function and behavior

	Open Virtual Platforms (OVP)
	OVP Basics
	Playing nice with other simulators
	Example

	Conclusions
	References

