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Abstract 
For many years, Electronic System Level (ESL) design and verification has been on the 
cusp of widespread adoption, but never seems to get there. Universities and companies 
claim to have the necessary breakthrough only to see the technology sit there for years or 
the company to hobble along without ever really becoming a success. Is this because ESL 
is failing to deliver on the promises or that the products are flawed? Is it because the 
preconceived notion of ESL is wrong? In this whitepaper the reasons behind this are 
investigated and the roles of a System Level Virtual Prototype (SLVP) will be discussed. 
Imperas Inc. recently announced their Open Virtual Platforms (OVP) initiative which 
may provide the missing piece of the puzzle to jump start successful commercial 
deployment of ESL flows. 

Introduction 
Electronic Design Automation (EDA) flows are built on the fundamental premise that 
models are freely interchangeable amongst vendors and have interoperability amongst 
them. This means that models can be written or obtained from anywhere and it is known 
that they will work together and be accepted by any vendor’s tools for simulation, 
analysis, synthesis or for any other purpose supported by the model. While this seems 
like a simple goal, it has been completely elusive in the world of ESL. We have neither 
model interoperability nor independence between model and tool. Because of this, it is 
almost impossible to put together complete ESL flows today, and thus ESL adoption 
remains patchy at best, and often derided. 
 
However, there are big changes happening in both the hardware and software worlds that 
will soon make it impossible to construct systems without an abstract model. In the 
hardware world, the large scale adoption of reuse means that larger systems are being put 
together like a Lego system. At the same time, processor complexity has hit a wall 
created by diminishing performance gains at the expense of huge power increases, such 
that most systems are now utilizing multiple simpler heterogeneous processors rather 
than one central processor. Much of the system functionality comes from software and 
this continues to grow as before, but now has to deal with the transition to a multi-
processor world as well. These changes, on both sides of the system, mean that we cannot 
continue for much longer without a viable system level model on which this functionality 
and architecture can be designed and verified. 
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Historical Perspective 
 

Hardware-software co-verification 
 
For the past decade there have been attempts to bring the hardware and software 
communities together by providing virtual models of the hardware that could be used for 
software development and verification. Perhaps the most successful of them was 
Seamless1 from Mentor Graphics which substituted Instruction Set Simulator (ISS) 
models for each of the processors and integrated them into a conventional RTL 
simulation environment. This provided a low level virtual prototype that was useful to the 
software developers since it provided them with something that looked very much like 
their familiar IDE and debugger and at the same time provided the hardware engineers 
with their traditional view of the system, including waveforms. This solution was found 
to be very good for driver debug and integration but did not have sufficient performance 
for much else. The Seamless product also included a number of performance boosters 
that virtualized the host memory system and this extended its usage into some low level 
OS areas2. Fundamentally though, Seamless is a cycle accurate RTL virtual prototype 
that is quickly bogged down by any activity within the hardware simulator. In later years 
faster models replaced the RTL models, such as C or SystemC models3 moving it into the 
realm of cycle approximate execution. This provided a much needed performance boost 
but it still meant that complex systems operated too slowly, making it unsuitable for 
mainstream software usage. Other companies have tried similar strategies, but with 
similar limitations to performance and ultimately limited success. While this bottom up 
product development strategy has come a long ways, it has not advanced fast enough and 
at the same time the rapidly rising complexity of systems and the introduction of multi-
processor systems mean that this will never be the answer to the more general problem. 

SystemC prototypes 
 
The industry has spent considerable time and effort on the construction of virtual 
platforms based on SystemC. Examples of this are platforms created and proliferated by 
CoWare4 and the proposed work project under Eclipse5 (Virtual Prototyping Platform 
(VPP). These prototypes provide the hardware engineer with a flexible and adaptable 
platform on which bus traffic, power, performance and many other attributes of an 
implementation can be analyzed. These models are specifically intended for hardware 
architecture exploration. While much faster than the RTL prototypes already discussed, 
they are still at performance levels that keep them in the domains of hardware verification 
and firmware development. They are much too slow for software application 
development. 
 
In addition, SystemC has failed to solve the model interoperability problem, something 
that the Transaction level Modeling (TLM) group of OSCI has been trying to rectify for 
quite some time now. Their latest attempt, which is still a long way from solidification, 
has failed to impress many in the industry, calling it “too little too late”. In addition, this 
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proposed standard only addresses memory mapped interface which limits its ability to 
define a complete system level prototype. 
 
Other companies, such as VaST Systems6 and Virtutech7 have forsaken the standards 
arena and used custom languages and tools to create faster models of the processors, 
memory systems and some aspects of the hardware. While they have successfully created 
prototypes with much higher performance, they suffer from the problems of model 
availability. Unless they write the models, it is unlikely that others will, making this more 
of a consulting and services model than a realistic tools business. The performance of 
such a complete system model is still not at a level suitable for applications development, 
but they have attempted to maintain as much cycle accuracy as possible, making it ideal 
for driver and OS development work, where such accuracy may be necessary. Another 
compromise is that these models assume working hardware and do not provide much in 
the way of visibility into the hardware models, making it less suitable for HW/SW 
debugging or system level analysis.  

ESL Unifiers 
 
As previously stated, one of the principle goals of proposed ESL flows has been to unify 
the design and development of hardware and software8. A unified flow would allow 
better design space exploration and enable tradeoffs in the domains of performance, 
power and flexibility. Most of the research into this area has concentrated on the 
automation of the hardware flow – following the lead of the migration to RTL where 
synthesis clearly became the central and most profitable aspect of the flow. But it is not 
clear that this will be the case for ESL. The application space is so broad that it appears to 
defy any single implementation path.  
 
There is much more commonality in the needs for verification, even though there are 
multiple sets of users, each of which has a somewhat different set of requirements. The 
principle users are hardware developers and architects, the hardware verification team, 
system architects and the software team. The hardware teams and timing specific driver 
development tasks require models that closely match the implemented timing.  Therefore 
the models must match or model the underlying architecture of the implementation. 
These users are adequately served by the solutions in place today and have already been 
discussed. The system architects – who are trying to define the optimal architecture for 
the hardware – do not need such detailed timing information, but they do need enough to 
be able to estimate performance and identify bottlenecks. This is a small market and one 
that few EDA companies have had success in pursuing, partly because nobody has really 
worked out how much detail and accuracy is needed. For the most part the software team, 
doing applications development, does not need much in the way of timing information. 
As each processor is clocked, time advances and so for each program thread, events will 
advance in the correct order. For multi-processor applications to work reliably, they must 
perform synchronization that does not depend on exact timing. Exact timing cannot be 
guaranteed in an embedded system, even when fully implemented, if any type of caching 
or resource sharing is used. If this does not include all systems today, then the addition of 
external events or timers can put systems into this class. Because of this, software should 
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never be written to depend on specific timing and so a system level model for the 
software community can dispense with timing altogether, relying instead of sequential 
order of execution and proper synchronization between threads. Synchronization is 
performed using semaphores, handshakes or a number of other mechanisms that ensure 
that software threads that need to communicate are in the necessary state for the exchange 
of data. 

Changing Needs 
 

Complexity 
 
As time progresses, we are concerned not so much with the function of a block or an 
isolated algorithm, but of the control and coordination of many of these working together 
to form a complete, multi-function system. All this additional capability inevitably leads 
to complexity and it has been stated that complexity is primarily driven by 
communications. In other words, more functionality that is independent does not 
necessarily mean extra complexity, but then that does not create the same level of 
usability. It is when tasks start to coordinate and communicating with each other, that 
additional complexity is seen. In this regard it follows Metcalfe’s law9 in a strange way. 
Metcalfe’s law of the Internet states that the usefulness of a network is proportional to the 
square of the number of users.  In a similar way, total system complexity appears to be 
proportional to the square of the number of users, or in this case, independent nodes on 
that network. Each of these nodes is able to communicate with each of the others and to 
collaborate to perform the total function. Also by implication, each of those nodes are 
performing an independent task or coordinating with others to fulfill a more complex 
task. With the advent of multi-processor SoCs, software has now become truly multi-
nodal since threads can execute in a fully concurrent manner and interact with each other 
in real time.  
 
It has been shown many times that the human mind can only deal with a certain number 
of items at one time. While this number may vary slightly between individuals, it stays 
constant for each, independent of the abstraction of those items. Thus as the number of 
nodes in a system increases it quickly gets beyond the ability of any individual to keep 
track of what each is doing and the ways in which they communicate. Thus models are 
needed to encapsulate these behaviors and the communications between them and present 
this information to the user in a way in which they can easily focus on a few objects in 
order to analyze their behavior, performance or their use of resources. The other blocks 
may remain hidden unless they begin to impact the current investigation. 

Software needs 
 
It has often been said that software engineers do not need models or prototypes of the 
hardware. While this may have been true for the simple applications of the past, where 
cross compiling the code onto the host was quick and easy, it is most certainly not true 
for code that has been developed to run on multi-processors. Even though current 
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desktops now have 2 or 4 processors, they provide a less reliable view into how the 
software would operate or perform on the actual embedded hardware, which may have 
special communications between the processors, or require heterogeneous processors. 
They thus need a much more accurate prototype on which to investigate the 
communications and synchronization of this new type of software application. Consider a 
network-on-a-chip (NOC). With this kind of chip, there are many identical processors 
and attached to each processor is a communications router. These routers are then 
connected in a regular structure, such that each processor can communicate directly with 
its neighbors, but must go through multiple routers in order to communicate with others 
processors further away from it. This structure of the communications needs to be 
modeled and analyzed in order to locate possible inefficiencies or areas of congestion. 
 
At the other end of the scale, many companies utilize physical prototypes to conduct 
software verification. While these operate at close to real time speeds and have very 
accurate timing, it is basically too late in the development cycle such that problems found 
in the software cannot be reflected by necessary changes in the hardware. This leads to 
inappropriate fixes in the software or compromises in functionality or performance of the 
complete system. With the introduction of multi-processor systems, this solution is also 
being tested in other ways since it is difficult to see what each processor is doing in real-
time and operations such as single stepping are almost impossible. What is needed is a 
solution that provides the same level of performance, but is available early in the design 
cycle. This necessitates an abstract model of the hardware that can enable realistic 
execution of the software. However – it must be able to do this at close to real time 
speeds in order to be acceptable. 

Accuracy and Timing 
 
One of the most difficult things for hardware designers to get over is the level of timing 
accuracy necessary in a model. If for a moment we conceive of a situation where the 
hardware and software are going to be designed and developed alongside each other, then 
we must have models available long before the RTL has been written. The software 
engineers may need to look at the traffic patterns created by their algorithms and tweak 
the hardware or software to accommodate the needs. It may be decided that certain 
decisions that were initially made do not hold up to closer examination and need to be 
changed. This cannot happen if a lot of time and energy has already been in invested in 
the details of implementation. So if hardware has not yet been implemented, how can we 
know the exact timing? The only thing that can be shown is that it meets the 
requirements. That is one of the purposes of a system level virtual prototype – to work 
out the timing necessary and other details of the architecture long before they are frozen. 
Thus timing is an artifact of implementation, and the lack of timing in the early stages of 
a project does not imply inaccuracy, just the degrees of freedom currently left in the 
design process. 
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Instruction accurate 
 
OVP10 states that their processor models are instruction accurate. This statement requires 
a little investigation. In the realm of ISS models, they have usually been defined as 
instruction accurate or cycle accurate. The instruction accurate models are approximately 
timed in that they claim to, on most occasions, execute each instruction using the correct 
number of clock cycles and they perform their I/O operations at sort of the right place 
within the instruction. The exact cycles on which things happen are not guaranteed. That 
is what is promised with cycle accurate models. However, very few cycle accurate 
models exist and most of them are really cycle approximate even though they claim 
otherwise. When OVP talks about instruction accurate, they mean this in the purely 
functional space and not in the behavioral space. 

Function and behavior 
This industry gets itself into so much trouble because of its loose use of terms and the 
above discussion is one of those. So please excuse a little digression. Functional models 
and behavioral models are strictly defined in the industry standard taxonomy11. To cut a 
long story short, a functional model does not include timing, although it may include 
sequence. A behavioral model includes timing although the level of detail of the timing is 
not defined. Both models may exist at any level of abstraction. Thus an ISS is a 
behavioral model. RTL and gate-level models are also behavioral models at different 
levels of abstraction. The OVP models are functional models. When they claim that they 
are instruction accurate, it means that the registers hold the correct values at the end of 
each instruction and create the right side effects from executing that instruction. They 
progress one instruction at a time and do not know anything about multi-execution 
pipelines, out of order execution or anything of those sorts. When an OVP platform is put 
together, each processor will advance one instruction at a time, as will any other 
processors in the platform. They may operate at different instruction frequencies, but the 
exact timing relationship between them has no conceptual meaning. When they attempt 
to use a shared resource, such as a memory, the model will arbitrate the access to the 
model and ensure that each transaction is conducted in a safe and repeatable manner. 
However, the order in which those access happen cannot be guaranteed. Thus if you have 
an application that depends on that level of detail, then an OVP model, or more broadly a 
functional model or even an approximately timed behavioral model is not for you. 
 

Open Virtual Platforms (OVP) 
The EDA industry has complained that the free availability of the SystemC simulator 
source code from the Open SystemC Initiative (OSCI) has fatally damaged the ability for 
commercial companies to make money from virtual platforms. This in turn means that 
few people outside of the Universities have much interest in extending or improving its 
capabilities. Any changes made to the OSCI kernel are treated with suspicion and 
customers are not willing to spend much for those improvements – be they speed or 
capabilities. In addition, SystemC failed to solve the model interoperability problem, 
something that the Transaction level Modeling (TLM) group has been trying to rectify for 
quite some time now as discussed earlier.  
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Imperas12 has taken a different approach with OVP and OVPsim. First they have made 
the interface, which addresses the model interoperability problem, the primary entity that 
they are making public. Along with it, they are seeding the market with a number of 
models that demonstrate the capabilities of the interface. To build and debug models, a 
simulator must also be available and Imperas has provided this, but only in executable 
form and only for the Windows platform. This free simulator is very much like the early 
version of Verilog that Cadence made openly available to everyone so they could develop 
models, interfaces or bolt-on tools for it. In the case of Verilog, the free simulator had 
dramatically lowered performance, but given that one of the prime motivations for OVP 
is performance, creating a low performance free simulator would be counter intuitive. 
The OVP website states that even higher performance is available from their simulator on 
other platforms, such as Linux, and that the free version does not contain features such as 
a multi-processor debugger – something that will be key to the development and 
verification of the next generation of platforms. It would thus appear as if Imperas has 
thought through the objectives and motivations for their donation of OVP. 

OVP Basics 
 
OVP is made up of four C interfaces: ICM for creating platforms, VMI for processors, 
BHM for behavioral blocks and PPM for peripherals. These interfaces are depicted in 
Figure 1. 

 
Figure 1: OVP Interfaces 

 
 ICM is the interface that ties together the basic blocks of the system, such as 
processors, memory sub-systems, peripherals and other hardware blocks. In this regard it 
is similar to the component construction that is done by SPIRIT13 based tools. The 
difference is that SPIRIT provides meta-data about the blocks and the interfaces between 
them, but this itself is not executable in any way. The ICM interface is a C interface that 
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when compiled and linked with those of each of the models and some object files 
produces an executable model. Given that it is based on standard C code, any C compiler 
can be used to create the model. Imperas has a commercial tool that will do the 
conversion from SPIRIT to the ICM model. In addition, the ICM interface allows 
memory images to be defined for the start of simulation. That means that programs or 
data can be pre-loaded into the system model. 
 
 Processors in OVP are not ISS models. While the performance of ISS models has 
increased tremendously over the past few years, they are still limited to a million 
instructions per second (MIPS) at best and in many cases can be as slow as a few tens of 
thousands of instructions per second. This is too slow for software development and 
debug, which must be within about a factor of 10 of real-time. With embedded processors 
typically operating in the 1 GHz range, that means ISS models are orders of magnitude 
away from the desired performance levels. VMI is the processor interface, allowing the 
processor model to communicate with the simulation kernel and the other components of 
the system. In addition VMI is the heart and soul of the high performance execution 
provided by OVP.  OVP uses a code morphing approach which is coupled with a just-in-
time (JIT) compiler to map the processor instructions into those provided by the host 
machine. In between are a set of optimized opcodes into which the processor operations 
are mapped, and OVPsim provides fast and efficient interpretation or compilation into the 
native machine capabilities. This is very different from the traditional ISS approach 
which interprets every instruction. The software community has been using these 
techniques14 for quite some time with impressive results and it appears that Imperas has 
done what we have seen many times in the past – that of migrating a successful software 
technique into the hardware design world. Another capability of VMI is to allow a form 
of virtualization for capabilities such as file I/O. This allows direct execution on the host 
using the standards libraries provided. 
 

Extensible processors, such as those from Tensilica15, are becoming a fixture in 
many SoCs. These call for a different type of processor model, where the core can be 
provided by the vendor, and the user has the ability to extend the instruction set to match 
the needs of their application. These extensions can also be added using the VMI 
interface. Thus it is possible to provide a base OVP model that is user extensible.   
 
 PPM, the peripheral modeling interface, is very similar to the fourth interface 
BHM, which is intended for more generalized behaviors. These models run in a second 
portion of the simulator that is called a Peripheral Simulation Engine (PSE). 
www.OVPworld.org states that “this is a protected runtime environment that cannot crash 
the simulator”. It does this by creating a separate address space for each model and 
restricts communications to the mechanism provided by the API. The principle difference 
between the two interfaces is that the PPM interface understands about busses and 
networks. It is thus similar in terms of functionality with the OSCI TLM interface 
proposal. The BHM is more like a traditional behavioral modeling language with 
processes activation, and the ability to wait for time or a specific event. This can handle 
more general forms of communications and thus provides the piece that TLM is missing. 
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OVP models the bus as a communications fabric but does not consider it to be a shared 
resource. In that respect all connections are pure one-to-one communications channels 
with their memories and peripherals. If bus arbitration was necessary, it probably means 
that you have multiple masters on a single bus, and you may need to model the bus as a 
block in the system. However, this goes back to the previous discussion about why you 
would care about the exact traffic patterns at this stage in the design. Perhaps more 
important would be to see the general traffic levels on each bus, and be able to identify 
the peaks. These could then be investigated further to see what can be changed to even 
them out, or to decide on scheduling or priority issues as part of the implementation. 

Playing nice with other simulators 
 
Playing with legacy models is always a necessity when introducing a new environment. 
Normally, simulators tend to want to be masters and can call into other models or 
simulators. This creates a conflict when two simulators need to be bolted together 
because neither of them really wants to relinquish control. Imperas has taken the opposite 
stance saying that they are a slave and thus callable from other environments – such as 
SystemC. The reverse is not true. OVPsim cannot call a SystemC model, something that 
is perhaps quite natural since the calling of SystemC would bring the entire simulator 
performance back down to the very thing it is trying to replace. On the other hand, if 
someone has a SystemC platform today, substituting part of the system with an OVP 
model may bring about a large performance gain in relative terms. However, at the end of 
the day, Amdahl’s Law tells us that we get diminishing returns dominated by the slowest 
running piece of the entire system, and thus even one SystemC model will make the 
system crawl along at the rates that we currently see and have been deemed unacceptable 
by the software development community. 

Example 
Several processor models, include those from ARM, MIPS and the OpenCores OR1K are 
available on the OVPWorld website along with prepackaged demos of them. One of the 
demos combines multiple heterogeneous cores together. Imperas has also made the free 
simulator available on-line so that other people can begin to create platforms or models of 
their own. Figure 2 shows the performance results that they obtained for each of the cores 
running a number of different benchmarks. 
 

 
Figure 2: OVP performance (on 3GHz PC host) 
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Conclusions 
OVP has the potential to provide the first true system-level virtual prototype that is 
capable not just as a platform for hardware development, but also for software 
development. That means it could be the first general purpose ESL modeling system that 
will form the cornerstone of complete ESL flows into both the hardware and software 
communities. While this has been done in specialized areas before, such as DSP design, it 
has never been solved in the more general case. Imperas has enabled, but not destroyed 
the commercial market for these prototypes, which means that it could get a lot more 
commercial attention than SystemC has garnered. If successful, it will also have 
addressed the model interoperability problem, and for that the entire industry should be 
thankful. 
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