
© 2014 Imperas Software LtdPage 1 CDNLive 11-Mar-14

Software Quality is Directly Software Quality is Directly
Proportional to Simulation Proportional to Simulation
SpeedSpeed
CDNLive!
11 March 2014

Larry Lapides

© 2014 Imperas Software LtdPage 2 CDNLive 11-Mar-14

Software Quality is Directly Software Quality is Directly
Proportional to Test SpeedProportional to Test Speed

 Intuitively obvious (so my presentation is done!)
 How to achieve more speed?
 How to find more bugs?
 How to know that quality has improved?

Faster Tests

More Tests Run

More Bugs Found

Greater Quality

© 2014 Imperas Software LtdPage 3 CDNLive 11-Mar-14

CadenceCadence--Imperas Integration Imperas Integration
Supports Simulation, Debug and Supports Simulation, Debug and
Software Development & Test ToolsSoftware Development & Test Tools

Cadence Virtual System Platform

ARM
Cortex-A9MPx2

SystemC/TLM-2.0

Verification, Analysis & Profiling (VAP) Tools
• CPU and OS awareness
• Tracing, profiling, coverage, memory analysis, …

• Over 25 different tools
• User extendable

GDB
Debugger

Cadence and
GDB debuggers
supported

© 2014 Imperas Software LtdPage 4 CDNLive 11-Mar-14

AgendaAgenda

 Simulation speed
 Simulation based tools for finding bugs
 Quality metrics
 Case study: OS porting, bring up and verification

on Altera Cyclone V SoC FPGA
 Summary

© 2014 Imperas Software LtdPage 5 CDNLive 11-Mar-14

AgendaAgenda

 Simulation speed
1) Start with a faster simulation engine
2) Use the multiple cores available in the host PC

 Simulation based tools for finding bugs
 Quality metrics
 Case study: OS porting, bring up and

verification on Altera Cyclone V SoC FPGA
 Summary

© 2014 Imperas Software LtdPage 6 CDNLive 11-Mar-14

Latest ManyLatest Many--Core Platforms Core Platforms
Require Scalable SimulationRequire Scalable Simulation

 Server SoC software test
suites can consist of 10s or
100s of tests, each
executing 10s or 100s of
billions of instructions

 Currently: Single threaded
simulation does not scale
with multicore platforms

 Simulation market leader’s
solution would take 1 week
to simulate that test suite

 Challenges: Get needed
simulation speed and fix
platform simulation scaling
problem

SMP Cores

Accelerators

© 2014 Imperas Software LtdPage 7 CDNLive 11-Mar-14

1) Start with a Faster Simulation 1) Start with a Faster Simulation
EngineEngine

Imperas Simulator Benchmarks

© 2014 Imperas Software LtdPage 8 CDNLive 11-Mar-14

Imperas: Fastest Virtual Imperas: Fastest Virtual
Platform Solution AvailablePlatform Solution Available

Just In Time (JIT) Code
Morphing Simulator

Imperas Speedup Over Next Fastest Commercial Solution, Conventional Simulation

Avg.
6x

Virtual platform with ARM Cortex-A9, single thread simulation

© 2014 Imperas Software LtdPage 9 CDNLive 11-Mar-14

2) Use the Multiple Cores 2) Use the Multiple Cores
Available in the Host MachineAvailable in the Host Machine

Local Memory

CPU2

Local Memory

CPU1

Local Memory

CPU3

Local Memory

CPU4

Host Processors

Simulation

x86 x86 x86 x86

 Multiple cores for parallel
simulation should result in
performance gains

 Previous attempts at
using multiple cores have
been unsuccessful due to
high overhead from
synchronization of
multiple simulation
threads

© 2014 Imperas Software LtdPage 10 CDNLive 11-Mar-14

QuantumLeap: 15x Faster Than QuantumLeap: 15x Faster Than
Next Fastest SolutionNext Fastest Solution

Average
15x

Platform Containing Four ARM Cortex-A9 UP

15x faster avg.
on quad host

 Advanced parallel synchronization algorithm for SMP, AMP and hardware
accelerators

 Transparent operation to user: No model, tool, software changes
 Total performance on benchmarks recorded up to 16K MIPS
 Accelerates execution 2-3x over current simulation performance (already 6x

faster), 15x over nearest alternative solution

© 2014 Imperas Software LtdPage 11 CDNLive 11-Mar-14

SMP Acceleration ResultsSMP Acceleration Results

 QuantumLeap speeds up Imperas SMP models by
2.25x on average for quad core SMP and host

 Works for Imperas OVP Fast Processor Models of SMP
cores even when used in a SystemC platform

All benchmarks run on ARM Cortex-A9MPx4 models

Simulated Applications Running Under Simulated Linux

© 2014 Imperas Software LtdPage 12 CDNLive 11-Mar-14

AgendaAgenda

 Simulation speed
 Simulation based tools for finding bugs
 Quality metrics
 Case study: OS porting, bring up and verification

on Altera Cyclone V SoC FPGA
 Summary

© 2014 Imperas Software LtdPage 13 CDNLive 11-Mar-14

Typical Software Simulator Typical Software Simulator
ExecutionExecution

Processor
Model

JIT Sim
Engine results

file
instruction to
be executed

Application
binary

 Imperas technical conclusion at founding: typical software simulation flow is not
adequate for software development, debug and test

 How to get full observability, controllability – the promise of simulation – from virtual
platforms?
 Need minimal overhead to maximize performance
 Need to maintain order of instruction execution
 Cannot introduce new “bugs” through the act of observation

 How to get near real time simulation performance?

 Solution: innovation in both simulator engine and processor model

© 2014 Imperas Software LtdPage 14 CDNLive 11-Mar-14

Imperas Unique Model and Imperas Unique Model and
Simulation TechnologySimulation Technology

 Architect the simulation environment, from the beginning, for performance
and tools; software tools should not be an afterthought

 OVP Fast Processor Models contain special information for tools
 SlipStreamer libraries for tools

 Non-intrusive: no modification of source code
 Executes as native host code for minimal overhead

 ToolMorphing engine tightly integrates models and tools

SlipStreamer
Binary Interception

Library

Application
binary

OVP
Fast Processor

Model ToolMorphing
+ JIT Sim

Engine

results
+

analysis
file

instruction to
be executed

tool code

© 2014 Imperas Software LtdPage 15 CDNLive 11-Mar-14

ToolMorphingToolMorphing Technology Technology
Enables Tool DefinitionEnables Tool Definition

VAP Tool (from Imperas) or User-Defined Tool:
Definition of the tool, written in C, included in simulation environment

Simulation Engine:
Just In Time (JIT) code morphing (binary translation)

OVP Processor Model:
CPU functionality, predefined views, events, actions

CPU and OS Helpers:
CPU and OS specific information

Tool Helper:
API enabling definition of software analysis tools

To
ol

M
or

ph
in

g
Si

m
ul

at
io

n
In

fr
as

tr
uc

tu
re

simulation engine
OVP CPU ModelApplication Software

& Operating System
Application Software
& Operating System

results

binaries

instrumentationinstrumentation

Virtual Platform

CPU, OS Helpers
Tool Helper

© 2014 Imperas Software LtdPage 16 CDNLive 11-Mar-14

Verification, Analysis & Profiling Verification, Analysis & Profiling
(VAP) Tool Suite for HDS (VAP) Tool Suite for HDS
Development Development

 Drivers
 Firmware
 Assembly libraries
 OS porting and bring up
 Hypervisors

 Multiprocessor, multicore, multithread,
multi-everything

 Non-intrusive
 Low overhead
 User extendable

Simulator Break on messages TCL callbacks Full GDB command set

Trace console
Trace execve
Trace scheduler
Trace tasks
Trace module loads
Trace printk

Operating System

Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

Bare Metal Apps & Middleware

Bus connectivity view
Peripheral register view
Peripheral src debugger
Processor freeze control
Trace peripheral access
Memory coverage
Shared memory checks

Platform (e.g. Drivers)

Multi Processor Debug
Address space introspection
Virtual2physical mapping
Print CP registers
TLB dump
Break on exception
Break on mode
Break on register change
Break on instruction
Instruction coverage
Instruction profiling
Instruction fault Injection
Cache analysis

Trace coprocessor registers
Trace TLB trace exceptions
Trace modes
Trace service calls
Trace hypervisor calls
Trace secure monitor calls
Trace MT/MP extensions
Trace system calls
Trace timer
Trace cache instructions
Trace SIMD extensions
Trace instruction
Trace register change

Processor
Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

© 2014 Imperas Software LtdPage 17 CDNLive 11-Mar-14

AgendaAgenda

 Simulation speed
 Simulation based tools for finding bugs
 Quality metrics
 Case study: OS porting, bring up and verification

on Altera Cyclone V SoC FPGA
 Summary

© 2014 Imperas Software LtdPage 18 CDNLive 11-Mar-14

Code CoverageCode Coverage
TN:cpuA.lcov
SP:cpuA
SF:/home/graham/mpeg2decode/src/getbits.c
DA:44,3
DA:45,3
DA:46,3
DA:47,3
DA:58,3
DA:59,3
DA:60,3
DA:63,1151
DA:66,1151
DA:67,1151
...

Runtime
analysis

 Non-intrusive statement and branch coverage
analysis using intercepts

 Full multiprocessor, multicore, and peripheral
code coverage

Standard .lcov file format

MIPS32MIPS32

Memory
(RAM)

LOCAL BUS

i

© 2014 Imperas Software LtdPage 19 CDNLive 11-Mar-14

AgendaAgenda

 Simulation speed
 Simulation based tools for finding bugs
 Quality metrics
 Case study: OS porting, bring up and verification

on Altera Cyclone V SoC FPGA
 Summary

© 2014 Imperas Software LtdPage 20 CDNLive 11-Mar-14

OS Porting, Bring Up and OS Porting, Bring Up and
Verification on Altera Cyclone V Verification on Altera Cyclone V
SoC FPGASoC FPGA

1) Linux boot on single core ARM Cortex-A9

2) SMP Linux boot on dual core ARM Cortex-A9

3) RTOS boot on single core ARM Cortex-A9

4) AMP boot on dual core ARM Cortex-A9

ARM
Cortex™-A9MPx2

UART0

Timer0

SRAM

System
Manager

L2 Cache Controller

UART1 Ethernet

DMA

Timer1

Timer2

Timer3

Reset Controller

Imperas SmartLoader

Altera Cyclone V SoC FPGA

© 2014 Imperas Software LtdPage 21 CDNLive 11-Mar-14

Cyclone V SoC FPGA Virtual Cyclone V SoC FPGA Virtual
PlatformPlatform
 Top level virtual platform built using Open Virtual Platforms (OVP,

www.OVPworld.org) ICM API
 ARM Cortex-A9MPx2 and Altera Nios II processor core models from

the OVP Library
 Peripheral models

 Some models available in the OVP Library
 Remaining models of peripheral components developed using OVP APIs

 OVP APIs written for C language
 Simulation engine: Imperas M*SDK

 All OVP processor and peripheral models include both native OVP
and native SystemC/TLM2 interfaces, so all the following results
could have been achieved using the OSCI SystemC simulator plus
Imperas M*SDK product
 Peripheral models could have been written in SystemC
 M*SDK tools require OVP processor core models for ToolMorphing

capability

© 2014 Imperas Software LtdPage 22 CDNLive 11-Mar-14

1a) Linux Boot on Single Core 1a) Linux Boot on Single Core
ARM CortexARM Cortex--A9A9
 Use Linux from Altera: Altera-3.4
 Use default configurations
 Use default device trees

 Comment out a few peripherals not yet modeled
 Bug found in Linux kernel preemptive scheduling

 Running multiple applications under Linux part of standard Imperas bring up
testing

 Linux boots and runs, but does not switch tasks properly
 Not observed in previous virtual platform (different virtual platform vendor) using

much slower model of ARM Cortex-A9MPx2
 Could not run multiple applications for long enough simulation to observe the

bug

 Approximately 2 man weeks effort to build virtual platform able to boot Linux
 Virtual platform boots Linux in under 5 sec on standard PC, Windows or

Linux

© 2014 Imperas Software LtdPage 23 CDNLive 11-Mar-14

1b) OS1b) OS--Aware Tools Used to Find Aware Tools Used to Find
the Bugthe Bug
 Use OS tracing [task, execve, schedule, context, …] to trace at the OS level,

not instruction level
 Higher level of abstraction makes debug easier: ~700,000,000 to boot Linux,

however, only ~700 tasks
 OS-aware tools debug in hours, once the bug was observed
 Simulation overhead due to OS-aware tools < 10%

© 2014 Imperas Software LtdPage 24 CDNLive 11-Mar-14

2) SMP Linux Boot on Dual Core 2) SMP Linux Boot on Dual Core
ARM CortexARM Cortex--A9A9

 Use Linux from Altera: Altera-3.6
 Use default configurations
 Use default device trees

 Comment out a few peripherals not yet modeled

 No problems in SMP Linux bring up on virtual platform

© 2014 Imperas Software LtdPage 25 CDNLive 11-Mar-14

3a) Micrium 3a) Micrium µµCOSCOS--II Boot on II Boot on
Single Core ARM CortexSingle Core ARM Cortex--A9A9

 Use Altera µCOS-II release
 Bugs found and fixed in GIC register accesses using OS-

aware tools
 Access ICDICER1 to 8 when only 0 to 7 exist
 Access ICDIPTR08 to 63 when only 00 to 55 exist

 Typically < 1 week effort to add support for new RTOS
 RTOS OS-aware tools include event scheduler viewing as

waveform

© 2014 Imperas Software LtdPage 26 CDNLive 11-Mar-14

3b) OS Porting and Bring Up3b) OS Porting and Bring Up
 Non-intrusive (no modification of

OS source) trace of
 process creation
 context switch
 process deletion

 Captures communications between
processes

 Supported OS include Linux,
FreeRTOS, Nucleus, μC/OS
 < 1 week to support new RTOS

 View in waveform viewer

© 2014 Imperas Software LtdPage 27 CDNLive 11-Mar-14

4a) AMP boot on Dual Core ARM 4a) AMP boot on Dual Core ARM
CortexCortex--A9A9

 Linux booting on first core, μC/OS-II on second core
 Bug found in Linux accesses of GIC registers
 Virtual platform debug took 2 days versus 2 weeks on

hardware platform (5x improvement)
 Also need to ensure that different operating systems do

not access forbidden memory segments
 Bugs found using custom memory access monitor

© 2014 Imperas Software LtdPage 28 CDNLive 11-Mar-14

4b) Custom Memory Access 4b) Custom Memory Access
Monitor Accelerates AMP Monitor Accelerates AMP
Platform DebugPlatform Debug

Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03008 VA: 0xffc03008
Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc0300c VA: 0xffc0300c
Warning (AMPCHK_MWV) cpu_CPU0: AMP write access violation in uart1 area. PA: 0xffc03010 VA: 0xffc03010
Warning (AMPCHK_MRV) cpu_CPU1: AMP read access violation in Linux memory area. PA: 0x00000020 VA: 0x00000020

//
// Define watch areas for memory and peripherals defined in the platform
//
memWatchT amcWatch[] = {
// name watchLow watchHigh allowedCPUs

{ "Linux memory", 0, 0x2fffffff, LINUX_CPU },
{ "uCOS memory", 0x30000000, 0x31ffffff, UCOSII_CPU },
{ "gmac0", 0xff700000, 0xff700fff, LINUX_CPU },
{ "emac0_dma", 0xff701000, 0xff701fff, LINUX_CPU },
{ "gmac1", 0xff702000, 0xff702fff, LINUX_CPU },
{ "emac1_dma", 0xff703000, 0xff703fff, LINUX_CPU },
{ "uart0", 0xffc02000, 0xffc02fff, LINUX_CPU },
{ "uart1", 0xffc03000, 0xffc03fff, UCOSII_CPU },
{ "CLKMGR", 0xffd04000, 0xffd04fff, LINUX_CPU },
{ "RSTMGR", 0xffd05000, 0xffd05fff, LINUX_CPU },
{ "SYSMGR", 0xffd08000, 0xffd08fff, LINUX_CPU },
{ "GIC", 0xfffec000, 0xfffedfff, LINUX_CPU },
{ "L2", 0xfffef000, 0xfffeffff, LINUX_CPU },
{ 0 } /* Marks end of list */

};

 Memory access monitor is just C code, less than 350 lines, loaded into simulation environment
 When simulation is run, monitor produces warning if memory access rules are violated

© 2014 Imperas Software LtdPage 29 CDNLive 11-Mar-14

SummarySummary
 More processor cores, more complex systems  more

tests are needed
 Simulation speed is critical for running more tests
 Also need tools and metrics, architected into the

simulation environment from the start
 Results were shown for SMP and AMP systems on Altera

Cyclone V SoC FPGA

Software quality is proportional to simulation speed!

