IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

lnn

peras &) GoogleCloud -% metrics

Rolling the dice with random instructions is

the safe bet on RISC-V verification

Simon Davidmann and Lee Moore - Imperas Software Ltd.

Richard Ho and Tao Liu - Google LLC.

Doug Letcher and Aimee Sutton - Metrics Technologies Inc.

SSSSSSSSSSSSSSSS

3rd March 2020

2020

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV O RISC-V presents new challenges

* RISC-V is a new ISA —an open standard ISA
— Managed by the non-profit RISC-V Foundation (riscv.org)
— This means any designer can build a processor implementation
* (Feb 2020 —there are almost 100 RTL designs including open source and proprietary)
* Traditionally
— processor IP comes from, and is maintained ISA owner
— is single sourced
— comes fully verified and compliant to that specific ISA
— all users need to do is to verify using integration tests
— there is no ‘standard’ approach and there are few available tools for processor verification

* The RISC-V industry / eco-system needs to adopt its best practises for hardware
verification and adapt them to processor verification

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV Goals of Testing

* Need to be clear what focus of testing is

— Architecture
e |SA Definition

— Micro-Architecture
* In-Order, Out-Of-Order, Simple-Scalar, Super-Scalar, Transactional Memory, Branch Predictors, ...
* Both of these are very different
— One is about ISA specification
— Other is about details of a specific implementation
— This is the difference between ‘Compliance’ and Design Verification

* In the RISC-V Foundation, ‘Compliance’ testing is checking the device works within
the envelope of the agreed specification

— i.e. “have you read and understood the specification”
— Compliance testing is not a full hardware verification...

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DYCON Compliance Testing

* The device works within the envelope of the agreed specifications

— Have you read and understood the specification

* Testing of the instructions should

— Attempt to use all registers as source and destination (not combinations)
— Attempt to operate on all bits which compose the immediate values (1 / 0)

— Capture a signature in memory region indicating the test result

* Based upon a particular hardware configuration

— Compare the signature against a known good reference
 Static (pre defined signature extraction)
* Dynamic (runtime generation from YAML configured reference)

SYSTEMS INITIATIVE

2020

DESIGN AND VERIF!CATION

DV Compliance Testing (2)

e Testing of the instructions should NOT

— Attempt to stress all possible aspects of functional verification, eg
* All possible combinations of instruction parameters (2-in, 1-out = 32,768)
* All possible data values

— Attempt to expose possible micro-architectural aspects

— Attempt to exercise behaviour which generates an exception

* lllegal instructions (unsupported extensions)
— (*) Do not test for missing M instructions in context of RV32I

* lllegal conditions (misaligned fetch, load, store)

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

* Covergroups
¥ Name Class Type
=) 2 mscv_inst_pkg/iscv_instr_cover_group
=+ M TYPEadd_cg fiscy_instr_co.
|+l TYPEsub_cg fiscv_insy_co..
+ M TPEaddl_cg fiscy_instr_co
2 TYPElui_cg fiscv_instr_co...
=+ 4 TYPEauipc_cg fiscv_instr_co..
4 o TPEsa g riscv_instr_co...
2 M TPES cg fiscv_instr_co.
2 M TPEs cg niscv_instr_co.
» M TWEsral_cg fiscv_instr_co...
o M TwEs_cg riscy_instr_co
2 M TPEsi cg
24 TYWExor cg =
BRI . © Covergroups —
2+ TYPEand_cg
= 4 TYPE xorl_cg '] Name
2 4 TYPEon_cg S | lnscv Instr_pkg/riscv_instr_cover_group
¥ : m;’:";" =14 TYPE add_cg
< o TPEst_cg + 4 CVPadd_cg:cp_rsi
2 TYPEsii_cg <-4 CVPadd_cg:cp_rs2
2 M TWEsin_cg
4 o TEbeq ca + 4 CVPadd_cg:cp_rd
+ i TYPEboe_cg +-2 CVP add_cg:cp_rsl_sign
- Tretena e M CVP add_cgicp_(s2_sign
o msnm::-; #-4 CVPadd_cg:cp_rd_sign
2 M TYPEbgeu_cg +- 4 CVPadd cg:cp_gpr_harzard
o M TYWEIb_cg = 3
s pri i + 4 CROSS add_cg:cp_sign_cross
+ 4 TREIw_cg + M TYPEsub_cg
e -4 TYPE addi_cg
=+ TYPElul_cg
+) 4 TYPE auipc_cg
-4 TYPEsra_cg
-3 TYPESH_cg
+- M TYPEst_cg
4+ 4 TYPE srai_cg
1 M TYPEslHi_cg
+i- 4 TYPEsri_cg
+ 4 TYPE xor_cg
+ o TYPEor_cg

+ 4 TYPEand_cg

+/- 4 TYPE xori_cg
) 4 TYPEori_cg

>

(accellera

SYSTEMS INITIATIVE

Compliance Testing — Test Qualification
Function Coverage

Coverage

100.00%
100.00%
96.55%

100.00%
100.00%
0.00%

% ol Goal |Status

100 00% [v

|Class Type

fiscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
fniscv_instr_co...
fiscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
riscv_instr_co...
niscv_instr_co...
riscv_instr_co...
fiscy_instr_co...
fiscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
riscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscy_instr_co...
fiscv_instr_co...
fiscv_instr_co...
fiscv_instr_co...
riscv_instr_co...

|Coverage

Included |Merge_instances

auto(t)
auto(1)
auto(1)
auto(1)
auto(1)
auto(1)
auto(1)
auto(l)
auto(l)
auto(1)
auto(l)

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

09.55%

100.00%
100.00%
100.00%

0.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%:
100.00%

|Goal

% of Goal |Status

Get_inst_coverage

100.00% I v
100.00% I v
100.00% I v
100.00% I
100.00% I v
100.00% [N
100.00% N v
100.00% N v
100.00% GG
100.00% I v
99.55%) v

0% (] v
) v

100.00% I v
100.00% [
100.00% EEEG—_—
GG —
100.00% I v
100.00% [v
100.00% I v
100.00% NG
100.00% N v
100.00% I v
100.00% I v

incluged

_ " Covergroups

v Name
= M hiscv_insyr_pkgiriscy_instr_cover_group

e e e e e e (e

A TYPEadd _cg
» 4 CVPadd _cg:cp_rsl
A CVPadd_cgicp_rs2
A CVPadd_cg:cp_rd
M CVPadd_cg:cp_rsi_sign
. 4 CVP add_cg:cp_rs2_sign
2 CVP add_cg:cp_rd_sign
) bin autoPOSITIVE]
1B) bin Ato[NEGATIVE]

kie@e

=/ 4 CVP add_cg:cp_gpr_harzard

) bin aulo]NO_HAZARD]

8] bin auto[RAW_HAZARDL

B] bin auto[WAHSE

B] bin aulo[WAV ¥ Name

CROSS add_cg
8] bin <auto[PO
Bl bin<autNE b
8] bin <auto[PO o
8) bin <aulo[NE
B) bin <autofPO
8] bin <auto[NE
8] bin <autb[PO
2] bin <auto|NE

) M TYPE sub_cg

) M TYPE addi_cg

) M TYPElu cg

) 2 TYPE auipc_cg

) 4 TYWEsa cg

A TeEsi cg

4 TPEs cg

| o TWEsai ca

auto(1
auto(l
auto(1
auto(1
auto(l
auto(l
auto(1
auto(1
auto(1
auto(1
auto(1
auto(1

&
o

Covergroups

=) M mscv_instr_pkgiriscy_instr_cover_group

TYPE add_cg
2 CVPadd_cg:cp_rsl

& M CVPadd_cgicp_1s2
= M CVPadd_cg:cp_rd

B) bin autoZERO)
B) bin auto[RA]
8] bin auto[SP}
B) bin auto[GP]
8) bin auto[TP)
8] bin auto[T0]
8) bin autofT1]
8) bin auto[T2]
8] bin auto[S0]
8] bin auto[S1]
B) bin auto[A0]
B) bin autofA1]
8) bin autofA2]
8] bin auto[A3]
B8] bin auto[A4]
8] bin auto]A5]
B) bin autofA6]
8] bin auto[A7]
8) bin auto[S2]
8] bin auto[S3]
B) bin auto[S4]
B) bin auto[SS5)
B) bin auto[S6)
B) bin auto[S7]
B) bin auto[S8]
8] bin auto[S9]
B) bin autofS10]
B) bin autofS11)
8] bin auto[T3]
8) bin auto[T4)
8] bin auto[T5]
8] bin auto[T6]

4 CVPadd_cg:cp_rsl_sign
A cvPada_cgicp_rs2_sign

Class Type

fiscv_instr_co.
nscv_instr_co.
niscv_instr_co..,
risev_instr_co...
riscv_instr_co...
fiscv_insy_co...
fiscv_instr_co...

riscv_instr_co...

Coverage Goal % of Goal |Status

100.00% 100 1
10832 1
728

CRSSSSSSSSsS

|Class Type Coverage Goal

riscv_inskr_co.. 100.00%
nscv_insyr_co 100
riscv_instr_co. 100.00%
fiscv_inst_co... 100.00%
320
313
315
407
453
345
389
423
403
409
483
352
37
396
352
412
358
387
429
382
368
348
442
323
399
414
382
448
415
415
354
312
100.00%
10000%

>

nscv_insy_co.
riscv_insy_co...

Coverage images from Mentor Questa SystemVerilog UVM Simulator

Included Merge_instances

100
100
100
100

= SN U UR ONC IRUG S N S O O S T S g

55

% of Goal |Status

Gel_inst_cove

auto(l)

100.00% N v
100 00% I v
100.00% I v
100.00% I v
100.00% NN v
100.00% I v
100.00% N v

100.00%

e/
100.00% I v
100.00% [v
100 00% NN v
100.00% I v
100.00% I v

.V
100.00% I v

100.00% G
100.00% —/

Included Merge_instance

a

8

2020

DESIGN AND VERIFICATION™

DV O Compliance Testing (3)

e Test Qualification

— Functional Coverage analysis

— Mutation Fault Simulation - Testing analysis (Imperas work in progress)

* Provides Decode Coverage
— Sees if observe changes on all bits of legal decodes

SYSTEMS INITIATIVE

Qo & & = Thu Oct 24, 5:23PM Lee Moore

= moore rlogin
File Edit View Scrollback Bookmarks Settings Help

File llback Bookmarks Settings Help

top - 17:23:49 up 4 days, 11:32, 10 users, load average: 9.42, 8.58, 9.73
Tasks: 293 total, 1 running, 227 sleeping, 0 stopped, 0 zombie

%$Cpuis): 0.2 us, 6.8 sy, 6.0 ni, 99.8 id, 0.0 wa, 6.8 hi, 0.0 si, 6.0 st
KiB Mem : 16293692 total, 3773168 free, 2346192 used, 10174332 buff/cache
KiB Swap: 16643068 total, 16639472 free, 3596 used. 13392468 avail Mem

PID USER
17660 moore

789 moore
17659 moore
27177 moore
27178 moore
30652 moore
30964 moore
29652 moore
8620 moore
7233 moore
32573 moore
18939 moore
17874 moore

coocoecoeNvooo oo
ocoococoocoeoco oo o)

coocooocoocooo oo ol
ccooooeeooo09

|: moore : Itest | |: moore : rlogin |

2020

DESIGN AND VERIFICATION™

DVCOIN Compliance Testing (4)

e Test Qualification

— Functional Coverage analysis

— Mutation Fault Simulation - Testing analysis (Imperas work in progress)

* Provides Decode Coverage
— Sees if observe changes on all bits of legal decodes
* Verified against RV32I test suite
— 48 hand coded directed tests (average 150 instructions each)

— https://github.com/riscv/riscv-compliance/tree/master/riscv-test-suite/rv32i/src

* Decode Coverage data from the Imperas tool
— ran 478,390 simulations in 308 secs

SYSTEMS INITIATIVE

11

IIIIIIIIIIIIIIIIIIIIIII

DV O Compliance Testing (5)

* Compliance RV32l Base Instruction Testing
— November/12/2019 — 48 tests

 Compliance RV64V Vector instruction Testing (Imperas work in progress)
— February/2020 — ~6,000 tests

* RISCV-V compliance suites are still a work in progress

SYSTEMS INITIATIVE

12

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
13

SYSTEMS INITIATIVE

IIIIIIIIIIIIIIIIIIIIII

) (=]m] N Directed Testing

e Test Encoded Self Checking

 Reference Comparison Checking

SSSSSSSSSSSSSSS

14

2020

DESIGN AND VERIFICATION™

DVCOIN

CONFERENCE AND EXHIBITION

Directed Testing — Test Encoded

e Tests are written with expected behaviour encoded
e Tests can introspect the state and (self) diagnose faults

// Device Under Test

int a = 4; int b = 5;

int ¢ = a + b;

assert(c == 9); // report error if result is not as expected

SYSTEMS INITIATIVE

15

2020

DESIGN AND VERIFICATION

DV

CONFERENCE AND EXH BITION

! Directed Testing — Reference Comparison

* Tests are written without predicting the result

A reference is consulted for the correct value

SYSTEMS INITIATIVE

// Device Under Test

int a = 4; int b = 5;

// Reference
int Ra = 4; int Rb = 5;

int ¢ = a + b; int Rc = Ra + Rb;
// c == 7? // Rc == 9
assert(c == Rc) // external (@runtime or post-processed)

16

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
17

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DVCON Constrained Random Testing

* Generate random streams of instructions

e Generator given guidance to target specific instruction types and values
— Many constraints required to get legal instruction sequences

* No predicted results, relies upon reference

SYSTEMS INITIATIVE

18

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
19

SYSTEMS INITIATIVE

—conidan. Previous open source RISC-V processor

DVLCOIN

CONFERENCE AND EXHIBITION

I Verification is one of
the key challenges of
modern processor

¥ development.

SYSTEMS INITIATIVE

verification solutions

riscv-tests

Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It's a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

20

“2020

DESIGN AND VERIFICATION™

RVCON Many missing pieces

Complex branch structure

MMU stress testing

Exception scenarios

Compressed instruction support

Full privileged mode operation verification
Coverage model

Motivation

Build a high quality open DV infrastructure that can be adopted and enhanced by DV
engineers to improve the verification quality of RISC-V processors.

SYSTEMS INITIATIVE

21

2020

DESIGN AND VERIFICATION™

DVECON Google RISC-V Instruction Stream Generation

High quality SystemVerilog UVM DV infrastructure Open Source
Open source (Apache 2.0) SystemVerilog

Drives a RISC-V core through corner cases and UiV
pushes it to the limit A

Instruction
Requires reference and DUT to generate instruction S
trace disassembly Generator
Traces compared as post-process (neutral CSV

format)

Can compare values and program flow
dependant upon target capability

Provides coverage for test quality, and to aid
guidance

accellera
22

SYSTEMS INITIATIVE

https://github.com/google/riscv-dv

2020

DESIGN AND VERIFICATION™

DV CIN Constrained Random Testing

CONFERENCE AND EXHIBITION

= = -
=== metrics £ Google Cloud
3 Google Cloud RTL Simulation Metricslog
SystemVerilog & memory y g

UVM

RISC-V —
Instruction Imperas ISS
Stream (cpu+memory)
RISCV.S RISCV.elf

Generator impera s Imperas.log

Imperas add

Vectors (~500)
Bitmanip (~100)

. UVM
RISC-V Functional
SRIERSE Coverage

* Google: open source riscv-dv instruction stream generator imperas
* Metrics : SystemVerilog design + UVM simulator for RTL
i) * Imperas have added Vector and
* Imperas: model and simulation golden reference of RISC-V CPU Bitmanip extension instructions
to the Functional Coverage

(not yet publicly released)

accellera .

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
24

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV O Imperas RISC-V Reference ISS

* Full RISC-V Specification envelope model
* Industrial quality model and simulator of RISC-V processors for use
Im eras in compliance, verification and test development
[;@ Complete, fully functional, configurable simulator
— All 32bit and 64bit features of ratified User and Privilege RISC-V specs
* Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
* Bit Manipulation extension, version 0.91, 0.92. 0.93 draft
— Model source included under Apache 2.0 open source license
* Used as golden reference in RISC-V Foundations’ Compliance Suite
Model & and Bit Manipulation group

Simulator » Extendibility: easy for user to extend with new instructions and
functionality

RISC-V
Reference

http://www.imperas.com/riscv In use as reference with customers for RTL DV, for example:

hitps:/github.com/riscv/riscv-ovpsim “Andes is pleased to certify the Imperas model and simulator as a reference
for the new Vector processor NX27V, and is already actively used by our
mutual customers.” ~ o~
* Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp ANDES

TECHNOLOGY

accellera
25

SYSTEMS INITIATIVE

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
26

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

e (Capacity requirement for simulation are not a
constant over a project

— The additional processor verification requirements only
increase this need for peak capacity

— Cloud resources address this need

e Metrics:

— Complete SystemVerilog IEEE 1800-2012 compliant
simulator including UVM

— Includes all the standard features of a
modern SystemVerilog simulator including debug, APIs,
language and testbench support

— Simulates the testbench, the RTL design, and the populates
the coverage models

SYSTEMS INITIATIVE

Metrics cloud based solution

-= metrics

SystemVerilog
UvMm
Testbench

RTL
RISC-V CPU

SystemVerilog
UVM
Coverage

https://metrics.ca/

27

https://metrics.ca/

.20 |ISG DV Flow is controlled by Makefile and
bash scripts and includes python scripts

CONFERENCE AND EXHIBITION

B MINGW32:~

simond@shell-1:~/git$ cat emaill.txt
cd git

source setup.env
cd /home/simond/git/ibex#ad¥/uvm
ke clean
e gen
ce iss_sim
<e compile_rtl_in _dsim
ce rtl_sim
ce post_compare

simond@shell-1:~/git$

L

—
——
\

Compile up SystemVerilog UVM test generator
and run it
« can easily set how many tests to create
each run
« Creates .S files that are then converted to .o
Run the Imperas ISS to generate reference
results

Compile the SystemVerilog RTL of ibex core and
testbench

Run RTL simulation & record RTL results

Post-processor run logs and compare

a@ * With Metrics — you get ssh access to shell as if PC was on your desk

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

* Example of detailed fail:

* Shows mis-matching
instructions
e Configured here to show 5

* Full traces etc are kept for
review

e Can dump full VCD for
detailed waveform
analysis

accellera

SYSTEMS INITIATIVE

And results are simple pass, or detailed fail

B! MINGW32:~ =

simond@shell-1:~/git/ibex/dv/uvm$

simond@shell-1:~/git/ibex/dv/uvm$

simond@shell ~fgit/ibex/dv/uvm$

simond@shell-1:~/git/ibex/dv/uvm$

simond@shell-1:~/git/ibex/dv/uvm$ make post_compare

./compare "/home/simond/git/ibex/dv/uvm/out”

compare simulation result under /home/simond/git/ibex/dv/uvm/out

Test: /home/simond/git/ibex/dv/uvm/out/instr_gen/asm_tests/riscv_instr_base test.8.S

Processing ovpsim log : /home/simond/git/ibex/dv/uvm/out/instr_gen/riscv_ovpsim/riscv_instr_base test.@.S.
Processed instruction count : 198
Processing ibex log : /home/s
Processed instruction count
Mismatch[1]:

[43] ibex

[43] ovpsim : auipc
Mismatch[2]:

[44] ibex

[44] ovpsim : addi
Mismatch[3]:

[45] ibex

[45] ovpsim : mul
Mismatch[4]:

[46]

[46] ovpsim : auipc
Mismatch[5]:

[47] ibex addi x9, x9, 1369 -» s1(©x81783559) addr:0x8000088ac
[47] ovpsim : addi 52,52,986 -> s2(0x80000526) addr:0x0000000080000150

Compare (ibex vs ovpsim) result[FAILED]: 43 matched, 64 mismatch

@ tests PASSED, tests FAILED

simond@shell-1:~/git/ibex/dv/uvm$ _

/git/ibex/dv/uvm/out/rtl_sim/riscv_instr_base_ test.®/trace_core_00 _6.log
lui x1, exfc2e4000 -> ra(oxfc2e4000) addr:0x80000088
sp,0xb -> sp(Bx8088b13c) addr:B8x000000008000013C

addi x1, x1, 631 ->» ra(exfc2e4277) addr:0x8000008c
Sp,sp,-800 -> sp(Bx8080aelc) addr:Bx0000000080000140

addi x4, x0, @ -> tp(@xe0000s08) addr:OxSAOAL0I6
a3,a2,s8 -> a3(0x00000000) addr:Ox00P0POLO30000143

lui x9, ©6x81783000 -> 51(0x81783000) addr:0x800000a8
52,0x0 -> s2(06x8000014C) addr:0x000000008000014C

o.log

2020

=csesinies Metrics Cloud Platform makes it all much simpler...

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Verification Web-based Verification Manager,
Teams Coverage Reporting and Debug Tools

! T

Git Repo, Change Unlimited Simulations Elastic Database for
History and Continuous Running in Parallel Massive Regression
Integration Flow Data Handling

a Isolated Cluster powered by &3 Google Cioud

* Complete solution for DV

30

2020

DESIGN AND VERIFICATION™

DVCON Metrics: can show functional coverage

.
@ ® :.: Metrics - Functional Coverage X —+]

s
ar

&« (& & https://demo.metrics.ca/lowRISC-ibex/coverage/functional/regressionRuns/riscv_instr_base_regr_2019-06-16_15-17-59 or Q W

: metrics M ibex Results GitLab Settings Admin Help / Feedback @ Metrics PE

riscv_instr_base_regr_2019-06-16_15-17-59 / Functional Coverage

Coverage Merged Sources

«Cl instr_cov.0 84.319 —_— 100% : mux-flow/build/ibex/rtl/ibex_tracer.sv:110
*CP instruction 84.319 — 100% 1
BIN instr_lui 101
BIN instr_auipc 875 101
BIN instr_jal 531 101
BIN instr_jalr 463 101
BIN instr_beq 1180 101
BIN instr_bne 554 101
BIN instr_blt 120 101
BIN instr_bge 183 101
BIN instr_bitu 153 101

accellera * Uses SystemVerilog covergroups etc.

SYSTEMS INITIATIVE

oneea2d. Mletrics: can even see detailed contribution of

DVCON . : :
each test including functional coverage

46.07%

IIIIIIIIIIIIIIIII

2020 Taltl I
oo B00. Metrics: includes top level overview

CONFERENCE AND EXHIBITION d as h b Oa rd

I ibex Results GitLab Settings Admin Help / Feedback @ Metrics PE

riscv_instr_base_regr
Get Started with :-! metrics ™

Passed/Total Test Runs

METRICS DOCS
pe——————————————— 1 Metrics Overview (2
- g Metrics Platform User Guide 2
———— = —
— e ——————

DSIM AND USI

Functional Coverage DSIM Release Notes
DSIM Known Issues 2

P] DSIM User Manual
= o

DSIM Legal @
USim User Guide

Assertion Coverage If you need help or want to send us feedback, check

out the Help / Feedback feature...

- Open Help / Feedback

Hide this help section on next visit

agcellera * Allows management overview of status of verification

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
34

SYSTEMS INITIATIVE

2020

DESIGN AND VERIF!CATION

DVC:CIN Key Issue — Reference Comparison

* One thing compliance, directed, random have in common...
— Is a need for a reference implementation to compare with

* So why do | need a reference as part of my verification ?
— Comparison for the observed behavior
— Covering all possible aspects of the ISA envelope

 And —it needs to represent exact your design and architecture:
— XLEN
— Vectors: VLEN, SLEN, ELEN, (version: 0.7.1, 0,8, 0.9 Draft, ...)
— Bit Manipulation (version: 0.9, 0.91, 0.92, ...)
— Custom Extensions
— M+U (No S)
— Hardware LSU Misalignment Support (no exception)
— CSR: MTVEC ReadOnly

SYSTEMS INITIATIVE

35

DVCON RISC-V Reference choices
* RISC-V is highly —\.
: 7 ,-(3
configurable | f oo w
* So it can get a little IQ : ’ r)
complicated ‘ W ‘” A Q‘ ?)
2
* 60... Questions ? o
"\

SYSTEMS INITIATIVE

36

2020

DESIGN AND VERIFICATION

DVLI

Imperas RISC-V Reference ISS

mperas

RISC-V
Reference

Model &
Simulator

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

SYSTEMS INITIATIVE

Full RISC-V Specification envelope model

Industrial quality model and simulator of RISC-V processors for use
in compliance, verification and test development

Complete, fully functional, configurable simulator

— All 32bit and 64bit features of ratified User and Privilege RISC-V specs
* Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
* Bit Manipulation extension, version 0.91, 0.92. 0.93 draft

— Model source included under Apache 2.0 open source license

Used as golden reference in RISC-V Foundations” Compliance Suite
and Bit Manipulation group

Extendibility: easy for user to extend with new instructions and
functionality

In use as reference with customers for RTL DV, for example:

— “Andes is pleased to certify the Imperas model and simulator as a
reference for the new Vector processor NX27V, and is already actively
used by our mutual customers.” i

* Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp ANDES

TECHNOLOGY

37

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

DV O Comparison Modes

* Post-process of data between DUT and Reference

 DUT and Reference Encapsulation

IIIIIIIIIIIIIIIII

38

oesion ANovE'?FQgTOON Com Pa rison Mo d es

NNNNNNNNNNNNNNNNNNNNNNN POSt-prOCGSS Of data

e Usually the easiest method to implement (dependent on tracing
formats)
— Capture of program flow (monitor the PC)
— Capture of program data (monitor the Registers, Memory)

e Potentially very large data files

* Potential for wasteful execution (early failure)

SYSTEMS INITIATIVE

39

o ea 220, Comparison Modes

Reference Encapsulation
* Instruction by instruction lockstep comparison

— Comparison of execution flow
— Comparison of program data

* Immediate comparison
— Allows for debug introspection at point of failure — very powerful
— Does not waste execution cycles after failure

SYSTEMS INITIATIVE

40

2020

DESIGN AND VERIFICATION™

DVC:CN Reference Encapsulation

* Imperas OVP simulators can act as a simulation Master

* Imperas OVP simulators can act as a simulation Slave
— Encapsulated into SystemC/TLM
— Encapsulated into SystemVerilog via DPI (Direct Procedural Interface)

SYSTEMS INITIATIVE

41

2020

DESIGN AND VERIFICATION™

DVEDn Imperas OVP model in SystemVerilog

SystemVerilog module

Config and Ref: OVP model SN
control file (cpu) A : |-o= s
. e v - - - - - - -

Semihosted

File /0 Debug: GDB or eGui Eclipse

* OVP model is encapsulated into a SystemVerilog module

* Like riscvOVPsim ISS it is an envelope model of RISC-V Foundation's stand ISA and ISA extensions
(RV32/64 IMAFDC + B + V)

* Includes variants for all standard configurations
* Single processor, external everything...
* Memory etc all in SystemVerilog
* Interfaces being: reset, step, address bus, data bus, interrupts, etc.,...
e Like riscvOVPsim it has full trace and logging capabilities
* Does work with a side-port for GDB or Eclipse eGui debug or Imperas Multi Processor debugger

a@ (eGui MPD) 2
4

SYSTEMS INITIATIVE

cen o OO OVP model (encapsulation)

EEs R

CONFERENCE AND EXHIBITION

mem~Read() memWrite() step()

- b

busReadCB() busWriteCB() step()

OVP RISCV-V CPU model object

SystemVerilog module

* OVP model is a binary shared object of a single core RISC-V CPU model
* Encapsulated into a SystemVerilog module, using SystemVerilog DPI
a@ * Instanced in SystemVerilog design or testbench like any module

43

SYSTEMS INITIATIVE

2000 Encapsulated OVP model

DESIGN AND VERIFICATION™

AT Running Compliance Suite

SystemVerilog Testbench

SystemVerilog module Signature

Ref OVP model Memory
memory (cpu) Writer

signature.dat

RISCV.elf

RISCV.S

* OVP model is encapsulated into SystemVerilog module as target in Compliance
Framework

* Loads .elf file and runs compliance test program — for each test in the compliance suite — generating
signature

e RISCV-V Compliance Suite framework controls target and collates signatures and
compares with golden reference

* Shows how easily SystemVerilog RTL can be used as target for compliance testing
User creates similar testbench for user CPU

SYSTEMS INITIATIVE

2020 _
e ot OVP model - Step and Compare

CONFERENCE AND EXHIBITION

SystemVerilog Testbench

DUT: RISC-V RTL

DUT
J (cpu) Control

memory

Step

SystemVerilog module &

Ref Compare

memory OVP model results.log

RISCV.S RISCV.elf (cpu)

 OVP model is encapsulated into SystemVerilog module

* Interfaces being: reset, clk, address bus, data bus, interrupts, registers, etc.,...

e Testbench loads .elf program into both memories, resets CPUs (RTL and OVP
model)

e Steps CPUs, extracting data, and comparing
* There is no stored log file — test log data is dynamic and requires two targets to be run

gﬁé&e//era and compared

SYSTEMS INITIATIVE

45

2020

DESIGN AND VERIFICATION™

DV Reference Comparison

* |nstruction Retire / PC Compare

— Compare the program flow during execution

— Dependent upon the data causing a program flow divergence (branch, jump,
exception)

— Does not detect data flow differences
— Least invasive regarding detailed knowledge or extraction of the RTL values

SYSTEMS INITIATIVE

46

2020

DESIGN AND VERIFICATION™

DV O Reference Comparison (2)

* |nstruction Retire / PC, WB, LD, ST Compare

— Compare the program flow during execution (PC)

— Compare the registers GPR, FPR, VEC, CSR

— Immediate detection of divergence due to control and/or data

— Will require detailed knowledge and extraction of the RTL values

SYSTEMS INITIATIVE

47

2020 ifi i —
e Expert modes of verification
Hot Swapping (RTL)

CONFERENCE AND EXHIBITION

SystemVerilog Testbench * Execute a long boot
segquence using a Fast

Control Processor model
memory
VP modl Step * e.g., boot Linux to login
(cpu) & prompt, and about to run
Ref Compare

memory user application

(accellera y

SYSTEMS INITIATIVE

oo 2020, Expert modes of verification —

DVE.‘DN

CONFERENCE AND EXHIBITION

SystemVerilog Testbench

DUT
Control
memory
DUT: RISC-V RTL

(cpu) Step
cpu 2

Ref Compare
memory

SYSTEMS INITIATIVE

Hot Swapping (RTL) (2)

e At the call to system exec()
of the user application, hot
swap the much slower RTL
representation of the core

e Using the OVP API’s the

entire machine state can be
extracted, and applied to
the RTL

* (H/W Accelerator)

49

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities

* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results

accellera
50

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

DVCON lowRISC lbex

Ibex Core

debug_req_i
)
IF Stage ID Stage EX Block
%Ea Decoder %»:
5 A s
§
= Controller €
) (0]
= A =
©
) RdA TU'
Reg File ne . | =
0 W'%ﬂ{ 4, CSR ‘ Wiala 0 /T
@IOWRISC /\ A x A > rdata_i 32 T

* |bex is a small 32 bit RISC-V CPU core (RV32IMC/EMC) with a two stage
pipeline, previously known as zero-risky (PULP)

a@ e https://github.com/lowRISC/ibex

SYSTEMS INITIATIVE

https://github.com/lowRISC/ibex

72020

DESIGN AND VERIFICATION™

=limels Case study: Ibex core verification

"f’\\‘" ‘ ED |
S WIS 1N

lllegal/hint instruct...

0,
341 Debug mode
31.3%
Others
6.3%

Pipeline issue

—— Memory access fault
12.5%
Interrupt e
18.8% R
Google Cloud Categories of found bugs
@;@//e,a * Using Random Instruction Stream Generator approach

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Coelerd)

SYSTEMS INITIATIVE

Bugs found

Cache line access racing

PTO

Wr
Load == SSTATUS e
Store L —= >
Load — MSTATUS
Load = mxr

Q

privileged CSR access

i

PT1 H— PT3 | . Load Branch Add @ .. | Mult |
PT 4 (%]

page fault handling

Y Google Cloud
e Using Random Instruction Stream Generator approach

Incorrect branch execution

T]— LSU —
o AU —
L

_—-b Multiplier | —

FENCE operation failure

X

T MULHSU —

ALU corner case bug

53

2020

DESIGN AND VERIFICATION™

DV O Agenda

 New challenges posed by new opportunities
* @Goals of Testing
— Differences between RISC-V Compliance and Design Verification

e Verification of RISC-V

— Compliance Testing

— Directed Testing

— Constrained Random Testing (Instruction Stream Generation)
« Components of a simulation based verification flow

— Instruction stream generators

— Reference implementations

— Use of Cloud resources

* Key Issue — Reference Comparison (step/compare verification)
Case Study / Results
* Conclusions

accellera
54

SYSTEMS INITIATIVE

2020

DESIGN AND VERIFICATION™

:a-\\ ,ﬁ,_‘——.,‘,:l :_),3\%?‘%3 :; []
DVLCON Conclusions

* Including a RISC-V processor in your design means much more verification is
needed
— Compliance Testing, Directed Testing, Instruction Stream Generation

* Current ‘gold standard’ approaches such as SystemVerilog UVM, functional
coverage and constrained random generators are needed to be adopted

* Itis essential to adopt a quality, configurable, proven RISC-V reference

* For efficient verification reference model encapsulation and run-time
step/compare is needed

e Solutions are available: e.g. collaboration between Imperas, Google, Metrics

Ihnperas) Google Cloud -= metrics

SYSTEMS INITIATIVE

95

2020

DESIGN AND VERIFICATION™

DVCON Thank You

e Visit https://www.imperas.com/riscv and https://www.ovpworld.org/riscv for more information

* https://github.com/google/riscv-dv
* https://metrics.ca/

* https://github.com/lowRISC/ibex

e RISC-V Foundation Compliance Suite, includes riscvOVPsim is available at:
— https://github.com/riscv/riscv-compliance

Simon Davidmann
Imperas Software Ltd.
info@imperas.com

SYSTEMS INITIATIVE

56

https://www.imperas.com/riscv
https://www.ovpworld.org/riscv
https://github.com/google/riscv-dv
https://metrics.ca/
https://github.com/lowRISC/ibex
https://github.com/riscv/riscv-compliance

