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RISC-V presents new challenges
• RISC-V is a new ISA – an open standard ISA

– Managed by the non-profit RISC-V Foundation (riscv.org)
– This means any designer can build a processor implementation

• (Feb 2020 – there are almost 100 RTL designs including open source and proprietary)

• Traditionally
– processor IP comes from, and is maintained ISA owner
– is single sourced
– comes fully verified and compliant to that specific ISA
– all users need to do is to verify using integration tests
– there is no ‘standard’ approach and there are few available tools for processor verification

• The RISC-V industry / eco-system needs to adopt its best practises for hardware 
verification and adapt them to processor verification

3



Goals of Testing
• Need to be clear what focus of testing is

– Architecture
• ISA Definition

– Micro-Architecture
• In-Order, Out-Of-Order, Simple-Scalar, Super-Scalar, Transactional Memory, Branch Predictors, …

• Both of these are very different
– One is about ISA specification
– Other is about details of a specific implementation
– This is the difference between ‘Compliance’ and Design Verification

• In the RISC-V Foundation, ‘Compliance’ testing is checking the device works within 
the envelope of the agreed specification
– i.e. “have you read and understood the specification”
– Compliance testing is not a full hardware verification…
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Compliance Testing
• The device works within the envelope of the agreed specifications

– Have you read and understood the specification

• Testing of the instructions should
– Attempt to use all registers as source and destination (not combinations)
– Attempt to operate on all bits which compose the immediate values (1 / 0)
– Capture a signature in memory region indicating the test result

• Based upon a particular hardware configuration

– Compare the signature against a known good reference
• Static (pre defined signature extraction)
• Dynamic (runtime generation from YAML configured reference)
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Compliance Testing (2)
• Testing of the instructions should NOT

– Attempt to stress all possible aspects of functional verification, eg
• All possible combinations of instruction parameters (2-in, 1-out = 32,768)
• All possible data values

– Attempt to expose possible micro-architectural aspects
– Attempt to exercise behaviour which generates an exception

• Illegal instructions (unsupported extensions)
– (*) Do not test for missing M instructions in context of RV32I

• Illegal conditions (misaligned fetch, load, store)
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Compliance Testing – Test Qualification 
Function Coverage

8Coverage images from Mentor Questa SystemVerilog UVM Simulator



Compliance Testing (3)
• Test Qualification

– Functional Coverage analysis
– Mutation Fault Simulation - Testing analysis (Imperas work in progress)

• Provides Decode Coverage
– Sees if observe changes on all bits of legal decodes
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Compliance Testing (4)
• Test Qualification

– Functional Coverage analysis
– Mutation Fault Simulation - Testing analysis (Imperas work in progress)

• Provides Decode Coverage
– Sees if observe changes on all bits of legal decodes

• Verified against RV32I test suite
– 48 hand coded directed tests (average 150 instructions each)
– https://github.com/riscv/riscv-compliance/tree/master/riscv-test-suite/rv32i/src

• Decode Coverage data from the Imperas tool
– ran 478,390  simulations in 308 secs
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Compliance Testing (5)
• Compliance RV32I Base Instruction Testing

– November/12/2019 – 48 tests

• Compliance RV64V Vector instruction Testing (Imperas work in progress)
– February/2020 – ~6,000 tests

• RISCV-V compliance suites are still a work in progress
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Directed Testing
• Test Encoded Self Checking
• Reference Comparison Checking
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Directed Testing – Test Encoded
• Tests are written with expected behaviour encoded
• Tests can introspect the state and (self) diagnose faults
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// Device Under Test
int a = 4; int b = 5;
int c = a + b;
assert(c == 9); // report error if result is not as expected



Directed Testing – Reference Comparison
• Tests are written without predicting the result
• A reference is consulted for the correct value
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// Device Under Test
int a = 4; int b = 5;
int c = a + b;
// c == ?

// Reference
int Ra = 4; int Rb = 5;
int Rc = Ra + Rb;
// Rc == 9

assert(c == Rc) // external (@runtime or post-processed)
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Constrained Random Testing
• Generate random streams of instructions
• Generator given guidance to target specific instruction types and values

– Many constraints required to get legal instruction sequences

• No predicted results, relies upon reference
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Previous open source RISC-V processor
verification solutionsOpen source RISC-V processor verification 

solutions
riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic 
functionality of each RISC-V instruction. It’s a very good starting 
point to find basic implementation issues. 

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V 
ISA extensions which makes it very attractive. Simple program structure 
and fixed privileged mode setting.

 

Verification is one of 
the key challenges of 
modern processor 
development. 
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Many missing pieces
Many missing pieces

● Complex branch structure
● MMU stress testing
● Exception scenarios
● Compressed instruction support
● Full privileged mode operation verification 
● Coverage model
● ...

Motivation
Build a high quality open DV infrastructure that can be adopted and enhanced by DV 
engineers to improve the verification quality of RISC-V processors.
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Google RISC-V Instruction Stream Generation

• High quality SystemVerilog UVM DV infrastructure
• Open source (Apache 2.0)
• Drives a RISC-V core through corner cases and 

pushes it to the limit
• Requires reference and DUT to generate instruction 

trace disassembly
• Traces compared as post-process (neutral CSV 

format)
• Can compare values and program flow

• dependant upon target capability
• Provides coverage for test quality, and to aid 

guidance
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Open Source
SystemVerilog
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Instruction 
Stream 
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https://github.com/google/riscv-dv



Constrained Random Testing
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• Google: open source riscv-dv instruction stream generator
• Metrics : SystemVerilog design + UVM simulator for RTL
• Imperas: model and simulation golden reference of RISC-V CPU

• Imperas have added Vector and 
Bitmanip extension instructions 
to the Functional Coverage

(not yet publicly released)

Open Source
SystemVerilog

UVM
RISC-V Functional 

Coverage

Imperas add
Vectors (~500)

Bitmanip (~100)

RISCV.S
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Imperas RISC-V Reference ISS
• Full RISC-V Specification envelope model
• Industrial quality model and simulator of RISC-V processors for use 

in compliance, verification and test development
• Complete, fully functional, configurable simulator

– All 32bit and 64bit features of ratified User and Privilege RISC-V specs
• Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
• Bit Manipulation extension, version 0.91, 0.92. 0.93 draft

– Model source included under Apache 2.0 open source license
• Used as golden reference in RISC-V Foundations’ Compliance Suite 

and Bit Manipulation group
• Extendibility: easy for user to extend with new instructions and 

functionality

• In use as reference with customers for RTL DV, for example:
– “Andes is pleased to certify the Imperas model and simulator as a reference 

for the new Vector processor NX27V, and is already actively used by our 
mutual customers.”
• Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp
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http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim
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Metrics cloud based solution
• Capacity requirement for simulation are not a 

constant over a project
– The additional processor verification requirements only 

increase this need for peak capacity
– Cloud resources address this need

• Metrics:
– Complete SystemVerilog IEEE 1800-2012 compliant 

simulator including UVM
– Includes all the standard features of a 

modern SystemVerilog simulator including debug, APIs, 
language and testbench support

– Simulates the testbench, the RTL design, and the populates 
the coverage models
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RTL 
RISC-V CPU

SystemVerilog
UVM

Testbench

SystemVerilog
UVM

Coverage

https://metrics.ca/

https://metrics.ca/


ISG DV Flow is controlled by Makefile and 
bash scripts and includes python scripts

• With Metrics – you get ssh access to shell as if PC was on your desk
28

• Compile up SystemVerilog UVM test generator 
and run it

• can easily set how many tests to create 
each run

• Creates .S files that are then converted to .o
• Run the Imperas ISS to generate reference 

results

• Compile the SystemVerilog RTL of ibex core and 
testbench

• Run RTL simulation & record RTL results

• Post-processor run logs and compare



And results are simple pass, or detailed fail

• Example of detailed fail:
• Shows mis-matching 

instructions
• Configured here to show 5

• Full traces etc are kept for 
review

• Can dump full VCD for 
detailed waveform 
analysis
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Metrics Cloud Platform makes it all much simpler…

• Complete solution for DV
30



Metrics: can show functional coverage

• Uses SystemVerilog covergroups etc.
31



Metrics: can even see detailed contribution of 
each test including functional coverage
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Metrics: includes top level overview 
dashboard

• Allows management overview of status of verification 33
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Key Issue – Reference Comparison
• One thing compliance, directed, random have in common...

– Is a need for a reference implementation to compare with

• So why do I need a reference as part of my verification ?
– Comparison for the observed behavior
– Covering all possible aspects of the ISA envelope

• And – it needs to represent exact your design and architecture:
– XLEN
– Vectors: VLEN, SLEN, ELEN, (version: 0.7.1, 0,8, 0.9 Draft, …)
– Bit Manipulation (version: 0.9, 0.91, 0.92, …)
– Custom Extensions
– M+U (No S)
– Hardware LSU Misalignment Support (no exception)
– CSR: MTVEC ReadOnly
– …
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RISC-V Reference choices
• RISC-V is highly 

configurable
• So it can get a little …. 

complicated

• 60… Questions ?
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Imperas RISC-V Reference ISS
• Full RISC-V Specification envelope model
• Industrial quality model and simulator of RISC-V processors for use 

in compliance, verification and test development
• Complete, fully functional, configurable simulator

– All 32bit and 64bit features of ratified User and Privilege RISC-V specs
• Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
• Bit Manipulation extension, version 0.91, 0.92. 0.93 draft

– Model source included under Apache 2.0 open source license
• Used as golden reference in RISC-V Foundations’ Compliance Suite 

and Bit Manipulation group
• Extendibility: easy for user to extend with new instructions and 

functionality

• In use as reference with customers for RTL DV, for example:
– “Andes is pleased to certify the Imperas model and simulator as a 

reference for the new Vector processor NX27V, and is already actively 
used by our mutual customers.”

• Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp

37

RISC-V
Reference 
Model &
Simulator

http://www.imperas.com/riscv
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Comparison Modes
• Post-process of data between DUT and Reference
• DUT and Reference Encapsulation
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Comparison Modes
Post-process of data

• Usually the easiest method to implement (dependent on tracing 
formats)
– Capture of program flow (monitor the PC)
– Capture of program data (monitor the Registers, Memory)

• Potentially very large data files
• Potential for wasteful execution (early failure)
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Comparison Modes
Reference Encapsulation

• Instruction by instruction lockstep comparison
– Comparison of execution flow
– Comparison of program data

• Immediate comparison
– Allows for debug introspection at point of failure – very powerful
– Does not waste execution cycles after failure
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Reference Encapsulation
• Imperas OVP simulators can act as a simulation Master
• Imperas OVP simulators can act as a simulation Slave

– Encapsulated into SystemC/TLM
– Encapsulated into SystemVerilog via DPI (Direct Procedural Interface)
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Imperas OVP model in SystemVerilog

• OVP model is encapsulated into a SystemVerilog module
• Like riscvOVPsim ISS it is an envelope model of RISC-V Foundation's stand ISA and ISA extensions 

(RV32/64 IMAFDC + B + V)
• Includes variants for all standard configurations

• Single processor, external everything…
• Memory etc all in SystemVerilog

• Interfaces being: reset, step, address bus, data bus, interrupts, etc.,…
• Like riscvOVPsim it has full trace and logging capabilities
• Does work with a side-port for GDB or Eclipse eGui debug or Imperas Multi Processor debugger 

(eGui MPD)
42

Ref: OVP model
(cpu) 

SystemVerilog module

Debug: GDB or eGui Eclipse

Config and 
control file



OVP model (encapsulation)

• OVP model is a binary shared object of a single core RISC-V CPU model
• Encapsulated into a SystemVerilog module, using SystemVerilog DPI
• Instanced in SystemVerilog design or testbench like any module
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SystemVerilog module

busReadCB()         busWriteCB()           step()

DPI DPI DPI

memRead()         memWrite()           step()

SystemVerilog Interface

Addr[31:0], Data[31:0], R/W, clk, reset, …

…

OVP RISCV-V CPU model object



Encapsulated OVP model
Running Compliance Suite

• OVP model is encapsulated into SystemVerilog module as target in Compliance 
Framework
• Loads .elf file and runs compliance test program – for each test in the compliance suite – generating 

signature
• RISCV-V Compliance Suite framework controls target and collates signatures and 

compares with golden reference
• Shows how easily SystemVerilog RTL can be used as target for compliance testing
• User creates similar testbench for user CPU
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GCC/
LLVM

RISCV.elf

signature.dat
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OVP model - Step and Compare

• OVP model is encapsulated into SystemVerilog module
• Interfaces being: reset, clk, address bus, data bus, interrupts, registers, etc.,…
• Testbench loads .elf program into both memories, resets CPUs (RTL and OVP 

model)
• Steps CPUs, extracting data, and comparing

• There is no stored log file – test log data is dynamic and requires two targets to be run 
and compared
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SystemVerilog module

DUT: RISC-V RTL
(cpu)DUT

memory

Ref
memory

Control

Step
&
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RISCV.S

GCC/
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RISCV.elf
results.log

SystemVerilog Testbench



Reference Comparison
• Instruction Retire / PC Compare

– Compare the program flow during execution
– Dependent upon the data causing a program flow divergence (branch, jump, 

exception)
– Does not detect data flow differences
– Least invasive regarding detailed knowledge or extraction of the RTL values
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Reference Comparison (2)
• Instruction Retire / PC, WB, LD, ST Compare

– Compare the program flow during execution (PC)
– Compare the registers GPR, FPR, VEC, CSR
– Immediate detection of divergence due to control and/or data
– Will require detailed knowledge and extraction of the RTL values
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Expert modes of verification –
Hot Swapping (RTL)

• Execute a long boot 
sequence using a Fast 
Processor model

• e.g., boot Linux to login 
prompt, and about to run 
user application
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DUT: RISC-V RTL
(cpu)

OVP model
(cpu) 

SystemVerilog module
DUT

memory

Ref
memory

Control

Step
&

Compare

SystemVerilog Testbench



Expert modes of verification –
Hot Swapping (RTL) (2)
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• At the call to system exec() 
of the user application, hot 
swap the much slower RTL 
representation of the core

• Using the OVP API’s the 
entire machine state can be 
extracted, and applied to 
the RTL

• (H/W Accelerator)

DUT: RISC-V RTL
(cpu)

DUT: RISC-V RTL
(cpu)

DUT
memory

Ref
memory

Control

Step
&

Compare

SystemVerilog Testbench
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lowRISC Ibex 

• Ibex is a small 32 bit RISC-V CPU core (RV32IMC/EMC) with a two stage 
pipeline, previously known as zero-risky (PULP)

• https://github.com/lowRISC/ibex
51

CSR

IF Stage

IM

ID Stage EX Block

Prefetch
Buffer

In
st

ru
ct

io
n 

M
em addr_o

rdata_i 32 ID
EX

Comp
Decoder

Decoder

Controller

Reg File

ALUOpA

OpB

MULT
DIV

RdA
RdB

Wr

IM
PC

RF

RF
IM

LSU

Da
ta

 M
em

addr_o

wdata_o
rdata_i

Ibex Core

OpA
OpB

32

32

IM

debug_req_i

https://github.com/lowRISC/ibex


Case study: Ibex core verification 

• Using Random Instruction Stream Generator approach
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Bugs found
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• Using Random Instruction Stream Generator approach
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Conclusions
• Including a RISC-V processor in your design means much more verification is 

needed
– Compliance Testing, Directed Testing, Instruction Stream Generation

• Current ‘gold standard’ approaches such as SystemVerilog UVM, functional 
coverage and constrained random generators are needed to be adopted

• It is essential to adopt a quality, configurable, proven RISC-V reference
• For efficient verification reference model encapsulation and run-time 

step/compare is needed
• Solutions are available: e.g. collaboration between Imperas, Google, Metrics
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Thank You
• Visit https://www.imperas.com/riscv and https://www.ovpworld.org/riscv for more information

• https://github.com/google/riscv-dv
• https://metrics.ca/

• https://github.com/lowRISC/ibex

• RISC-V Foundation Compliance Suite, includes riscvOVPsim is available at:
– https://github.com/riscv/riscv-compliance

Simon Davidmann
Imperas Software Ltd.

info@imperas.com
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