
Rolling the dice with random instructions is
the safe bet on RISC-V verification

1

Simon Davidmann and Lee Moore - Imperas Software Ltd.
Richard Ho and Tao Liu - Google LLC.

Doug Letcher and Aimee Sutton - Metrics Technologies Inc.

3rd March 2020

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

2

RISC-V presents new challenges
• RISC-V is a new ISA – an open standard ISA

– Managed by the non-profit RISC-V Foundation (riscv.org)
– This means any designer can build a processor implementation

• (Feb 2020 – there are almost 100 RTL designs including open source and proprietary)

• Traditionally
– processor IP comes from, and is maintained ISA owner
– is single sourced
– comes fully verified and compliant to that specific ISA
– all users need to do is to verify using integration tests
– there is no ‘standard’ approach and there are few available tools for processor verification

• The RISC-V industry / eco-system needs to adopt its best practises for hardware
verification and adapt them to processor verification

3

Goals of Testing
• Need to be clear what focus of testing is

– Architecture
• ISA Definition

– Micro-Architecture
• In-Order, Out-Of-Order, Simple-Scalar, Super-Scalar, Transactional Memory, Branch Predictors, …

• Both of these are very different
– One is about ISA specification
– Other is about details of a specific implementation
– This is the difference between ‘Compliance’ and Design Verification

• In the RISC-V Foundation, ‘Compliance’ testing is checking the device works within
the envelope of the agreed specification
– i.e. “have you read and understood the specification”
– Compliance testing is not a full hardware verification…

4

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

5

Compliance Testing
• The device works within the envelope of the agreed specifications

– Have you read and understood the specification

• Testing of the instructions should
– Attempt to use all registers as source and destination (not combinations)
– Attempt to operate on all bits which compose the immediate values (1 / 0)
– Capture a signature in memory region indicating the test result

• Based upon a particular hardware configuration

– Compare the signature against a known good reference
• Static (pre defined signature extraction)
• Dynamic (runtime generation from YAML configured reference)

6

Compliance Testing (2)
• Testing of the instructions should NOT

– Attempt to stress all possible aspects of functional verification, eg
• All possible combinations of instruction parameters (2-in, 1-out = 32,768)
• All possible data values

– Attempt to expose possible micro-architectural aspects
– Attempt to exercise behaviour which generates an exception

• Illegal instructions (unsupported extensions)
– (*) Do not test for missing M instructions in context of RV32I

• Illegal conditions (misaligned fetch, load, store)

7

Compliance Testing – Test Qualification
Function Coverage

8Coverage images from Mentor Questa SystemVerilog UVM Simulator

Compliance Testing (3)
• Test Qualification

– Functional Coverage analysis
– Mutation Fault Simulation - Testing analysis (Imperas work in progress)

• Provides Decode Coverage
– Sees if observe changes on all bits of legal decodes

9

(c) Imperas Software, Ltd.10

Compliance Testing (4)
• Test Qualification

– Functional Coverage analysis
– Mutation Fault Simulation - Testing analysis (Imperas work in progress)

• Provides Decode Coverage
– Sees if observe changes on all bits of legal decodes

• Verified against RV32I test suite
– 48 hand coded directed tests (average 150 instructions each)
– https://github.com/riscv/riscv-compliance/tree/master/riscv-test-suite/rv32i/src

• Decode Coverage data from the Imperas tool
– ran 478,390 simulations in 308 secs

11

Compliance Testing (5)
• Compliance RV32I Base Instruction Testing

– November/12/2019 – 48 tests

• Compliance RV64V Vector instruction Testing (Imperas work in progress)
– February/2020 – ~6,000 tests

• RISCV-V compliance suites are still a work in progress

12

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

13

Directed Testing
• Test Encoded Self Checking
• Reference Comparison Checking

14

Directed Testing – Test Encoded
• Tests are written with expected behaviour encoded
• Tests can introspect the state and (self) diagnose faults

15

// Device Under Test
int a = 4; int b = 5;
int c = a + b;
assert(c == 9); // report error if result is not as expected

Directed Testing – Reference Comparison
• Tests are written without predicting the result
• A reference is consulted for the correct value

16

// Device Under Test
int a = 4; int b = 5;
int c = a + b;
// c == ?

// Reference
int Ra = 4; int Rb = 5;
int Rc = Ra + Rb;
// Rc == 9

assert(c == Rc) // external (@runtime or post-processed)

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

17

Constrained Random Testing
• Generate random streams of instructions
• Generator given guidance to target specific instruction types and values

– Many constraints required to get legal instruction sequences

• No predicted results, relies upon reference

18

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

19

Previous open source RISC-V processor
verification solutionsOpen source RISC-V processor verification

solutions
riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

20

Many missing pieces
Many missing pieces

● Complex branch structure
● MMU stress testing
● Exception scenarios
● Compressed instruction support
● Full privileged mode operation verification
● Coverage model
● ...

Motivation
Build a high quality open DV infrastructure that can be adopted and enhanced by DV
engineers to improve the verification quality of RISC-V processors.

21

Google RISC-V Instruction Stream Generation

• High quality SystemVerilog UVM DV infrastructure
• Open source (Apache 2.0)
• Drives a RISC-V core through corner cases and

pushes it to the limit
• Requires reference and DUT to generate instruction

trace disassembly
• Traces compared as post-process (neutral CSV

format)
• Can compare values and program flow

• dependant upon target capability
• Provides coverage for test quality, and to aid

guidance

22

Open Source
SystemVerilog

UVM
RISC-V

Instruction
Stream

Generator

https://github.com/google/riscv-dv

Constrained Random Testing

23

• Google: open source riscv-dv instruction stream generator
• Metrics : SystemVerilog design + UVM simulator for RTL
• Imperas: model and simulation golden reference of RISC-V CPU

• Imperas have added Vector and
Bitmanip extension instructions
to the Functional Coverage

(not yet publicly released)

Open Source
SystemVerilog

UVM
RISC-V Functional

Coverage

Imperas add
Vectors (~500)

Bitmanip (~100)

RISCV.S

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

24

Imperas RISC-V Reference ISS
• Full RISC-V Specification envelope model
• Industrial quality model and simulator of RISC-V processors for use

in compliance, verification and test development
• Complete, fully functional, configurable simulator

– All 32bit and 64bit features of ratified User and Privilege RISC-V specs
• Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
• Bit Manipulation extension, version 0.91, 0.92. 0.93 draft

– Model source included under Apache 2.0 open source license
• Used as golden reference in RISC-V Foundations’ Compliance Suite

and Bit Manipulation group
• Extendibility: easy for user to extend with new instructions and

functionality

• In use as reference with customers for RTL DV, for example:
– “Andes is pleased to certify the Imperas model and simulator as a reference

for the new Vector processor NX27V, and is already actively used by our
mutual customers.”
• Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp

25

RISC-V
Reference
Model &
Simulator

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

26

Metrics cloud based solution
• Capacity requirement for simulation are not a

constant over a project
– The additional processor verification requirements only

increase this need for peak capacity
– Cloud resources address this need

• Metrics:
– Complete SystemVerilog IEEE 1800-2012 compliant

simulator including UVM
– Includes all the standard features of a

modern SystemVerilog simulator including debug, APIs,
language and testbench support

– Simulates the testbench, the RTL design, and the populates
the coverage models

27

RTL
RISC-V CPU

SystemVerilog
UVM

Testbench

SystemVerilog
UVM

Coverage

https://metrics.ca/

https://metrics.ca/

ISG DV Flow is controlled by Makefile and
bash scripts and includes python scripts

• With Metrics – you get ssh access to shell as if PC was on your desk
28

• Compile up SystemVerilog UVM test generator
and run it

• can easily set how many tests to create
each run

• Creates .S files that are then converted to .o
• Run the Imperas ISS to generate reference

results

• Compile the SystemVerilog RTL of ibex core and
testbench

• Run RTL simulation & record RTL results

• Post-processor run logs and compare

And results are simple pass, or detailed fail

• Example of detailed fail:
• Shows mis-matching

instructions
• Configured here to show 5

• Full traces etc are kept for
review

• Can dump full VCD for
detailed waveform
analysis

29

Metrics Cloud Platform makes it all much simpler…

• Complete solution for DV
30

Metrics: can show functional coverage

• Uses SystemVerilog covergroups etc.
31

Metrics: can even see detailed contribution of
each test including functional coverage

32

Metrics: includes top level overview
dashboard

• Allows management overview of status of verification 33

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

34

Key Issue – Reference Comparison
• One thing compliance, directed, random have in common...

– Is a need for a reference implementation to compare with

• So why do I need a reference as part of my verification ?
– Comparison for the observed behavior
– Covering all possible aspects of the ISA envelope

• And – it needs to represent exact your design and architecture:
– XLEN
– Vectors: VLEN, SLEN, ELEN, (version: 0.7.1, 0,8, 0.9 Draft, …)
– Bit Manipulation (version: 0.9, 0.91, 0.92, …)
– Custom Extensions
– M+U (No S)
– Hardware LSU Misalignment Support (no exception)
– CSR: MTVEC ReadOnly
– …

35

RISC-V Reference choices
• RISC-V is highly

configurable
• So it can get a little ….

complicated

• 60… Questions ?

36

Imperas RISC-V Reference ISS
• Full RISC-V Specification envelope model
• Industrial quality model and simulator of RISC-V processors for use

in compliance, verification and test development
• Complete, fully functional, configurable simulator

– All 32bit and 64bit features of ratified User and Privilege RISC-V specs
• Vector extension, configurable, versions 0.7.1, 0.8, 0.9 draft
• Bit Manipulation extension, version 0.91, 0.92. 0.93 draft

– Model source included under Apache 2.0 open source license
• Used as golden reference in RISC-V Foundations’ Compliance Suite

and Bit Manipulation group
• Extendibility: easy for user to extend with new instructions and

functionality

• In use as reference with customers for RTL DV, for example:
– “Andes is pleased to certify the Imperas model and simulator as a

reference for the new Vector processor NX27V, and is already actively
used by our mutual customers.”

• Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp

37

RISC-V
Reference
Model &
Simulator

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

Comparison Modes
• Post-process of data between DUT and Reference
• DUT and Reference Encapsulation

38

Comparison Modes
Post-process of data

• Usually the easiest method to implement (dependent on tracing
formats)
– Capture of program flow (monitor the PC)
– Capture of program data (monitor the Registers, Memory)

• Potentially very large data files
• Potential for wasteful execution (early failure)

39

Comparison Modes
Reference Encapsulation

• Instruction by instruction lockstep comparison
– Comparison of execution flow
– Comparison of program data

• Immediate comparison
– Allows for debug introspection at point of failure – very powerful
– Does not waste execution cycles after failure

40

Reference Encapsulation
• Imperas OVP simulators can act as a simulation Master
• Imperas OVP simulators can act as a simulation Slave

– Encapsulated into SystemC/TLM
– Encapsulated into SystemVerilog via DPI (Direct Procedural Interface)

41

Imperas OVP model in SystemVerilog

• OVP model is encapsulated into a SystemVerilog module
• Like riscvOVPsim ISS it is an envelope model of RISC-V Foundation's stand ISA and ISA extensions

(RV32/64 IMAFDC + B + V)
• Includes variants for all standard configurations

• Single processor, external everything…
• Memory etc all in SystemVerilog

• Interfaces being: reset, step, address bus, data bus, interrupts, etc.,…
• Like riscvOVPsim it has full trace and logging capabilities
• Does work with a side-port for GDB or Eclipse eGui debug or Imperas Multi Processor debugger

(eGui MPD)
42

Ref: OVP model
(cpu)

SystemVerilog module

Debug: GDB or eGui Eclipse

Config and
control file

OVP model (encapsulation)

• OVP model is a binary shared object of a single core RISC-V CPU model
• Encapsulated into a SystemVerilog module, using SystemVerilog DPI
• Instanced in SystemVerilog design or testbench like any module

43

SystemVerilog module

busReadCB() busWriteCB() step()

DPI DPI DPI

memRead() memWrite() step()

SystemVerilog Interface

Addr[31:0], Data[31:0], R/W, clk, reset, …

…

OVP RISCV-V CPU model object

Encapsulated OVP model
Running Compliance Suite

• OVP model is encapsulated into SystemVerilog module as target in Compliance
Framework
• Loads .elf file and runs compliance test program – for each test in the compliance suite – generating

signature
• RISCV-V Compliance Suite framework controls target and collates signatures and

compares with golden reference
• Shows how easily SystemVerilog RTL can be used as target for compliance testing
• User creates similar testbench for user CPU

44

OVP model
(cpu)

SystemVerilog module
Ref

memory

Control
RISCV.S

GCC/
LLVM

RISCV.elf

signature.dat

SystemVerilog Testbench

Signature
Memory
Writer

OVP model - Step and Compare

• OVP model is encapsulated into SystemVerilog module
• Interfaces being: reset, clk, address bus, data bus, interrupts, registers, etc.,…
• Testbench loads .elf program into both memories, resets CPUs (RTL and OVP

model)
• Steps CPUs, extracting data, and comparing

• There is no stored log file – test log data is dynamic and requires two targets to be run
and compared

45

OVP model
(cpu)

SystemVerilog module

DUT: RISC-V RTL
(cpu)DUT

memory

Ref
memory

Control

Step
&

Compare

RISCV.S

GCC/
LLVM

RISCV.elf
results.log

SystemVerilog Testbench

Reference Comparison
• Instruction Retire / PC Compare

– Compare the program flow during execution
– Dependent upon the data causing a program flow divergence (branch, jump,

exception)
– Does not detect data flow differences
– Least invasive regarding detailed knowledge or extraction of the RTL values

46

Reference Comparison (2)
• Instruction Retire / PC, WB, LD, ST Compare

– Compare the program flow during execution (PC)
– Compare the registers GPR, FPR, VEC, CSR
– Immediate detection of divergence due to control and/or data
– Will require detailed knowledge and extraction of the RTL values

47

Expert modes of verification –
Hot Swapping (RTL)

• Execute a long boot
sequence using a Fast
Processor model

• e.g., boot Linux to login
prompt, and about to run
user application

48

DUT: RISC-V RTL
(cpu)

OVP model
(cpu)

SystemVerilog module
DUT

memory

Ref
memory

Control

Step
&

Compare

SystemVerilog Testbench

Expert modes of verification –
Hot Swapping (RTL) (2)

49

• At the call to system exec()
of the user application, hot
swap the much slower RTL
representation of the core

• Using the OVP API’s the
entire machine state can be
extracted, and applied to
the RTL

• (H/W Accelerator)

DUT: RISC-V RTL
(cpu)

DUT: RISC-V RTL
(cpu)

DUT
memory

Ref
memory

Control

Step
&

Compare

SystemVerilog Testbench

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results

50

lowRISC Ibex

• Ibex is a small 32 bit RISC-V CPU core (RV32IMC/EMC) with a two stage
pipeline, previously known as zero-risky (PULP)

• https://github.com/lowRISC/ibex
51

CSR

IF Stage

IM

ID Stage EX Block

Prefetch
Buffer

In
st

ru
ct

io
n

M
em addr_o

rdata_i 32 ID
EX

Comp
Decoder

Decoder

Controller

Reg File

ALUOpA

OpB

MULT
DIV

RdA
RdB

Wr

IM
PC

RF

RF
IM

LSU

Da
ta

 M
em

addr_o

wdata_o
rdata_i

Ibex Core

OpA
OpB

32

32

IM

debug_req_i

https://github.com/lowRISC/ibex

Case study: Ibex core verification

• Using Random Instruction Stream Generator approach
52

Bugs found

53
• Using Random Instruction Stream Generator approach

Agenda
• New challenges posed by new opportunities
• Goals of Testing

– Differences between RISC-V Compliance and Design Verification
• Verification of RISC-V

– Compliance Testing
– Directed Testing
– Constrained Random Testing (Instruction Stream Generation)

• Components of a simulation based verification flow
– Instruction stream generators
– Reference implementations
– Use of Cloud resources

• Key Issue – Reference Comparison (step/compare verification)
• Case Study / Results
• Conclusions

54

Conclusions
• Including a RISC-V processor in your design means much more verification is

needed
– Compliance Testing, Directed Testing, Instruction Stream Generation

• Current ‘gold standard’ approaches such as SystemVerilog UVM, functional
coverage and constrained random generators are needed to be adopted

• It is essential to adopt a quality, configurable, proven RISC-V reference
• For efficient verification reference model encapsulation and run-time

step/compare is needed
• Solutions are available: e.g. collaboration between Imperas, Google, Metrics

55

Thank You
• Visit https://www.imperas.com/riscv and https://www.ovpworld.org/riscv for more information

• https://github.com/google/riscv-dv
• https://metrics.ca/

• https://github.com/lowRISC/ibex

• RISC-V Foundation Compliance Suite, includes riscvOVPsim is available at:
– https://github.com/riscv/riscv-compliance

Simon Davidmann
Imperas Software Ltd.

info@imperas.com

56

https://www.imperas.com/riscv
https://www.ovpworld.org/riscv
https://github.com/google/riscv-dv
https://metrics.ca/
https://github.com/lowRISC/ibex
https://github.com/riscv/riscv-compliance

