
Understanding the
RISC-V Verification Ecosystem

Simon Davidmann, Imperas Software
Aimee Sutton, Imperas Software

Lee Moore, Imperas Software

Not talking about these familiar concepts…
• SystemVerilog simulators, UVM
• Formal
• CI technology
• Hardware assist
• FPGA prototyping
• VHDL
• Virtual platforms
• Verification services companies
=> All very important, but not covered in this talk….

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Imperas
• 2008 – developed world class processor modeling & simulation solutions for many ISAs

for virtual prototyping and software development
• A good, growing, and profitable business

• 2016 started looking at RISC-V
• 2018 RISC-V processor developers started using Imperas RISC-V model as reference for

their hardware verification
• For last 5 years have been assisting companies with their RISC-V DV needs
• For last 4 years started working collaboratively with free and open source solutions

• e.g. OpenHW Group open source highly verified industrial quality RISC-V cores

• For last 3 years working on RISC-V verification standards and advanced methodologies
• 2022 Introduced first RISC-V processor DV solution that works out-of-the-box

riscvOVPsimPlus / riscvISATESTS – Commercial firms

Downloaders from OVPworld of riscvOVPsimPlus / riscvISATESTS (21-feb-2023)

riscvOVPsimPlus / riscvISATESTS – Academic, Research & Groups

Downloaders from OVPworld of riscvOVPsimPlus / riscvISATESTS (21-feb-2023)

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

About RISC-V

• Developed by researchers at Berkeley in 2010 under Prof. Patterson
• RISC-V is an open standard Instruction Set Architecture (ISA) enabling

a new era of processor innovation through open collaboration
• RISC-V International (riscv.org) is the global non-profit home of the

RISC-V ISA, related specifications, and stakeholder community
• 3,000+ RISC-V members across 70+ countries contribute and collaborate to

define RISC-V open specifications as well as convene and govern related
technical, industry, domain, and special interest groups

RISC-V Reference card (2018)

Initially 47 instructions,
now over 1,000,
in 70+ ISA extensions

RISC-V Profiles & Platforms

• Ways of grouping the many extensions….

RISC-V Evolving (2022)

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

The RISC-V Disconnect

RISC-V Core User
Expects core quality to be
the same as Arm

RISC-V Core Developer
Unlikely to have resources needed be

able to develop all the technologies
required to perform the same level of

verification as Arm

RISC-V

Putting Processor Verification into Context….

1,000,000,000,000,000
The number of verification cycles Arm uses when verifying an Arm core

• SystemVerilog simulator executes 2,000 cycles / second
=> 15,000 SystemVerilog simulators running for 1 year

• HW emulator or FPGA runs at 1,000,000 cycles / second
Þ30 years of running needed…

• OK – so this is for high end performance OoO, MP, VM cores (full apps processors)
• Embedded processors will be an order of magnitude less…

RISC-V Design Verification Challenges

• Processor verification has been a niche discipline
• Proprietary techniques

• No industry-standard best practices or verification IP
• Until recently… (stay tuned)

• Techniques from ASIC/SoC verification are insufficient
• New methods are required
• Take advantage of what has worked in the ASIC world
• Add to it and enhance for RISC-V

So what is being done in the RISC-V world

• In the RISC-V world, it is unlikely that one company can spend the $ or can hire the
people to develop all they need…
• [Arm relies on ISA / design royalty, Intel relies on silicon sale…]

1) Partnering and Collaboration in non-competitive areas
2) Attracting players into the verification ecosystem to develop needed solutions
3) Building standards to facilitate re-use and efficiency

• If it does not differentiate your product offering / company
• You can collaborate externally
• You can license commercial tools

So what have we learnt in last 5 years…
There are many approaches for ‘verification’ of new processors

• Does a program run? – ‘hello world’ tests
• Is there simple correct computation? – ‘self checking tests’

• Signature checking – ‘post simulation signature dump compares’
• Trace log checking – ‘post simulation trace file compare’

• Basic step and compare co-simulation – ‘instruction retire compare’
• Advanced, e.g. commercial solutions – ‘async-lock-step-compare’

• [Note: this discussion is only about dynamic simulation verification – there are of course many excellent
commercial formal verification solutions]

Simple tests

Compliance

Verification

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

RISC-V processor verification environment
components
• Test Programs
• Instruction Set Simulators
• DUT + Tracer
• Processor reference model
• Verification IPs

Test programs
• Directed tests

• Write your own
• Compliance tests (RISC-V International)
• Architectural Compatibility test suites (Imperas open source riscvISATESTS)
• Configurable Commercial test suites (e.g. Imperas PMP and Vector)
• Other open source, e.g. OpenHW directed test suites (synchronous & asynchronous)

• Instruction stream generators (ISG)
• Configurable to match processor extensions
• Open source solutions

• e.g. riscv-dv (Google / CHIPS Alliance)
• Commercial solutions

• e.g. Valtrix STING

Instruction Set Simulators

• ISS
• Simulate the execution of a program on a processor
• Produce a trace file output
• Open source solutions
• Commercial/closed-source solutions
• e.g. riscvOVPsimPlus

RISCV.elf Imperas_trace.log

Imperas ISS
(cpu+memory)

DUT + Tracer
• DUT (Design Under Test)
• RTL for RISC-V processor
• Memory model and bus i/f
• Ability to load test program into memory

• Tracer
• Extracts information needed for DV

• e.g. PC, register values
• Bespoke to particular microarchitecture
• Often written by processor designers
• Can use RVVI-TRACE standard

RISC-V Core RTL
(DUT) Tr

ac
er

Memory

Testbench

Processor Reference Model
• Reference model requirements:
• Configurable to select RISC-V ISA extensions
• Ability to extend / add customizations (e.g. instructions, CSRs)
• Can run in co-simulation configuration
• Can be controlled from other simulator
• Ability to “step” reference model at significant events (retire, trap)
• Can run in lock-step with the RTL simulator
• Functions to query state of model for comparison

Imperas is used as RISC-V Golden Reference Model

• Imperas provides full RISC-V Specification envelope model
• Industrial quality model /simulator of RISC-V processors for use in

compliance, verification and test development
• Complete, fully functional, configurable model / simulator

• All 32bit and 64bit features of ratified User and Privilege RISC-V
specs

• Vector extension, versions 0.7.1, 0.8, 0.9, 1.0
• Bit Manipulation extension, versions 0.90, 0.92, 0.93, 0.94, 1.0.0
• Hypervisor version 0.6.1, 1.0
• Debug versions 0.13.2, 0.14, 1.0.0
• K - Crypto Scalar version 0.7.1, 1.0.0
• K - Crypto Vector version 0.3.0
• P - DSP versions 0.5.2, 0.9.6

• Model source included under Apache 2.0 open source license

http://www.imperas.com/riscv

RISC-V
Reference

Model

M
od

el
 C

on
fig

35
0+

 p
ar

am
s

Imperas Simulator

http://www.imperas.com/riscv

Imperas RISC-V reference model

• Imperas develops and maintains base model
• Base model implements RISC-V specification in full

• Fully user configurable to select required ISA
extensions
• Fully user configurable to select which version of

each ISA extension
• Imperas provides methodology to easily extend

base model
• Imperas model is architected for easy extension

& maintenance

March 23

User Extension:
custom

instructions
& CSRs

• Separate source files and no duplication to
ensure easy maintenance

• Imperas or user can develop the extension

• User extension source can be proprietary

RISC-V
Reference

Model

M
od

el
 C

on
fig

35
0+

 p
ar

am
s

Imperas Simulator

Verification IPs
• Requirements:
• Instance in SystemVerilog test bench
• Scoreboard
• Functional Coverage
• Logger
• Signature writers
• Virtual peripherals (for async event generation)
• Comparators
• Synchronizers
• Fault injectors
• …

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Compliance versus Verification
• Need to be clear what focus of testing is

• Architecture
• ISA Definition

• Micro-Architecture
• In-Order, Out-Of-Order, Simple-Scalar, Super-Scalar, Transactional Memory, Branch Predictors, …

• These are very different
• One is about ISA specification
• Other is about details of a specific implementation
• This is the difference between “Compliance” and Design Verification

• In the RISC-V Foundation, “Compliance” testing is checking the device works
within the envelope of the agreed specification
• i.e. “have you read and understood the specification”
• For RISC-V, compliance testing is a very small percentage of full hardware verification…

Many approaches for ‘verification’ (recap)

• Does a program run? – ‘hello world’ tests
• Is there simple correct computation? – ‘self checking tests’

• Signature checking – ‘post simulation signature dump compares’
• Trace log checking – ‘post simulation trace file compare’

• Basic step and compare co-simulation – ‘instruction retire compare’
• Advanced, e.g. commercial solutions – ‘async-lock-step-compare’

• [Note: this discussion is only about dynamic simulation verification – there are of course many excellent
commercial formal verification solutions]

Simple tests

Compliance

Verification

RISC-V processor ‘verification’ approaches
• Simple:
• run program ‘hello world’ tests
• self checking tests

• Compliance:
• post simulation signature dump file compare
• post simulation trace log file compare

• Verification:
• Basic ‘instruction retire step compare’ co-simulation
• Quality ‘async lock step compare’ co-simulation

Simple Level
Self-Checking Tests

• Components:
• RISC-V processor (DUT) and test

program; optionally ISS

• Process:
• Each test program checks its

results
• Prints message to log
• Or writes bit to memory

• for later reading

RISC-V RTL
& memory

Application
<cross>.elf “Test Passed”

Simple Level
Self-Checking Tests : Pros and Cons
• Pros:
• Simple to set up and execute

• Free ISS: https://github.com/riscv-ovpsim
• Free compiler: https://github.com/Imperas/riscv-toolchains

• RISC-V tests freely available, e.g. Berkeley tests
• https://github.com/riscv-software-src/riscv-tests

• Cons:
• Simple tests cover a small subset of processor functionality
• Not a complete DV strategy

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains
https://github.com/riscv-software-src/riscv-tests

Compliance Level
Post-Simulation Signature File Comparison

• Components:
• RISC-V processor (DUT) and test program
• ISS + reference model

• Process:
• Run the test program on the DUT and

save the output (signature file)
• Run ISS + reference model, write

signature file
• Compare / diff file results
• This is the approach taken by RISC-V

International for their architectural
validation (“compliance tests”)

Application
<cross>.elf

RISCV.sig
Signature file

RISC-V RTL
& memory

Application
<cross>.elf

Compare

RISCV.sig
Signature file

riscvOVPsimPlus
(cpu+memory)

Compliance Level
Post-Sim Signature file compare : Pros and Cons
• Pros:
• Simple to set up and execute

• Free ISS: https://github.com/riscv-ovpsim
• Free compiler: https://github.com/Imperas/riscv-toolchains

• RISC-V tests & compliance level tests freely available

• Cons:
• Directed tests cover a subset of processor functionality
• Easy to have incomplete or wrong info in signatures (misses behaviors)
• Not a complete DV strategy

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains

Compliance level
Post-Simulation Trace Log File Compare
• Components
• Test programs

• Can be generated by an ISG – Instruction Stream Generator
• Instruction Set Simulator (ISS) + reference model
• DUT and Tracer
• RTL simulator
• Comparison script

Compliance Level
Post-Simulation Trace Log File Compare: Process

Sequential:
1) Run random generator (ISG) to create tests
2) Simulate using ISS; write trace log file
2) Simulate using RTL; write trace log file
3) Run compare program to see differences / failures

RISC-V
Instruction

Stream
Generator

RISCV.S

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Imperas_trace.log

compare
Imperas ISS
(cpu+memory)

DUT_trace.log

Compliance Level
Post Sim Trace Log File Compare : Pros and Cons
• Pros:
• Availability of quality RISC-V simulators (e.g. riscvOVPsimPlus from Imperas)
• Simple to set up and use

• Cons:
• Must run RTL simulation to the end
• Cannot debug live
• Difficult to verify asynchronous events (e.g. interrupts, debug requests)
• Incompatible trace formats (between RTL, ISS, …)
• Easy to skip instructions, and only compare selected few
• Not a comprehensive DV strategy

Verification Level
Sync. Step-And-Compare co-simulation
• Components
• Test programs (can be compliance, directed, or generated by an ISG)
• Processor reference model
• DUT and tracer
• Step-and-compare logic
• Comprehensive test bench
• RTL simulator

Verification Level
Sync. Step-And-Compare co-simulation : Process

• Reference model is encapsulated in a SystemVerilog testbench
• Control block steps both DUT and reference model
• Extracts data from each; compares results on-the-fly
• Differences reported immediately

RISC-V
Instruction

Stream
Generator

RISCV.s

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Reference
model

Control
Step &

compare

Testbench

Results.log

Tr
ac

er

Verification Level
Sync. Step-And-Compare co-sim : Pros and Cons
• Pros:
• Instruction by instruction lock-step comparison
• Comparison of execution flow, program data, internal state
• Errors are flagged immediately – no runaway simulations
• Detects synchronous bugs

• Cons:
• Step-and-compare logic can be fragile and error prone
• Does not easily verify asynchronous events

Verification Level
Async. Step-And-Compare co-simulation
• Components
• Test programs (can be generated by an ISG)
• Processor reference model
• DUT and tracer
• Asynchronous event drivers (e.g. UVM agents)
• RISC-V VIP
• Comprehensive test bench
• RTL simulator

Verification Level
Async. Step-And-Compare co-simulation: Process

• Asynchronous events are driven into the DUT
• Tracer informs reference model about async events
• Verification IP handles scoreboarding, comparison, coverage, pass/fail

Tr
ac

erRISC-V
Instruction

Stream
Generator

RISCV.s

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Testbench

Results.log

Debug
driver

Interrupt
driver

Tr
ac

er

RISC-V
Reference

model

ImperasDV
RISC-V VIP

Verification Level
Async. Step-And-Compare co-sim : Pros and Cons
• Pros:
• All the benefits of sync. step-and-compare
• Responds to asynchronous events
• Checking is done for you
• VIP is reusable across different core DV projects
• Ease of use
• Training, documentation, and support

• Cons:
• Cost of VIP licenses

Verification Levels: Summary
 Check basic

functionality
(E.g.
compliance)

 Supports
constrained-
random stimulus

Simulation ends
after specified # of
errors

Debug at
the point
of error

Verifies
asynchronous
events

Achieves
verification
closure

Self-checking tests

Signature file
compare

Post-sim trace file
compare

Synchronous step
and compare

Asynchronous
step and compare

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Open Standards
RISC-V Verification Interface: RVVI

• RVVI = RISC-V Verification Interface
• https://github.com/riscv-verification/RVVI

• Work has evolved over 3 years
• Imperas, EM Micro, SiLabs, OpenHW

• Standardize communication between
DUT, testbench, and RISC-V VIP
• Two parts (currently):

• RVVI-TRACE: signal level interface to
RISC-V VIP

• RVVI-API: function level interface to
RISC-V VIP

RISC-V
Core
RTL

(DUT)

Simulation
control

RISC-V
Verification

IP

Testbench

RV
VI

-T
RA

CE
RV

VI
-A

PI

Tr
ac

er

https://github.com/riscv-verification/RVVI

Open Standard: RVVI-TRACE

• Defines information to be extracted by
tracer
• SystemVerilog interface
• Includes functions to handle

asynchronous events
• e.g. interrupts, debug requests

RISC-V
Core
RTL

(DUT)

RISC-V
Verification IPTr

ac
er

RV
VI

-T
RA

CE

valid
insn[..]

net_push()
net_pop()

. . .

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

Open Standard: RVVI-API

• Standard functions that RISC-V
processor VIPs need to implement
• Supports a step-and-compare co-

simulation methodology
• C and SystemVerilog versions

available
• https://github.com/riscv-

verification/RVVI/blob/main/include
/host/rvvi/rvvi-api.h

rvviRefEventStep()

rvviRefGprsCompare()

rvviRefPcCompare()

rvviRefCsrsCompare()

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefCsrGet()

RV
VI

-A
PI

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h
https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h
https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

RISC-V Processor VIP

• Requirements:
• Standard interface to receive tracer data
• Standard way to receive asynchronous events
• Configurable, extendable RISC-V processor reference model
• Methods to configure, control and query the reference model
• Mechanism to compare DUT state with the reference model and report

errors/mismatches
• A method to verify DUT response to asynchronous events

ImperasDV
Configurable Reference

RISC-V
Reference

Model

ImperasDV
Testbench

RV
VI

-T
RA

CE

SystemVerilog C

Configuration

• Imperas configurable reference
model
• Fully user configurable to select

required ISA extensions, versions
• Extensible to match user

customizations
• Configuration methods related

to memory map (volatile
regions) and CSRs

ImperasDV Components
Control and Introspection

RISC-V
Reference

Model

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog C

Configuration

Synchronization

• RVVI-TRACE data is converted
into function calls (RVVI-API)
which provide DUT state
information to the reference
model

• Synchronization keeps the
reference model running in lock-
step with the DUT

ImperasDV Components
Asynchronous Events

RISC-V
Reference

Model

ImperasDV
RV

VI
-T

RA
CE

trace2api

RV
VI

-A
PI

SystemVerilog C

Configuration

Synchronization

Predictive
engine

• Predictive engine is notified
about asynchronous events via
RVVI-API

• Analyzes the current state of the
DUT and determines which
responses to these events are
legal

ImperasDV Components
Comparison

RISC-V
Reference

Model

Scoreboard

ImperasDV

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog
Pass/Fail

determinationC

Configuration

Synchronization

Predictive
engine

• RVVI-API methods invoke
comparison between RTL and
reference

• Scoreboard keeps track of all
passed and failed comparisons

ImperasDV Components
Coverage interface and Logging

RISC-V
Reference

Model

Scoreboard

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

trace2log

SystemVerilog
Pass/Fail

determinationC

Configuration

Synchronization

Predictive
engine

trace2cov

• RVVI-TRACE data is used for
functional coverage sampling
(trace2cov) and to produce
detailed logfiles for debug
(trace2log)

ImperasDV + RVVI: Process
• Instantiate VIP in a testbench
• Connect tracer using RVVI-TRACE i/f
• DUT and reference model run the

same program
• Retire, trap events communicated

over RVVI
• Internal state continuously compared
• RVVI-TRACE monitored for async

events
• Predictive engine verifies legal

scenarios

ImperasDV using RVVI
• Pros:

• Checks full machine state at every event
• Sequence checking is done for you
• Errors are flagged immediately, and in detail
• Finds synchronous and asynchronous bugs
• Reusable across different core DV projects
• Interchangeable due to standard interface (RVVI)
• Ease of use
• Training, documentation, and support

• Cons:
• Cost of VIP licenses

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

RISC-V Functional Coverage

For a processor there are different types of functional coverage
required:
• Standard ISA architectural features
• unpriv. ISA items: mainly instructions, their operands, their values
=> these are standard and the same for all RISC-V processors – it is the spec…

• Customer core design & micro-architectural features
• priv. ISA items, CSRs, Interrupts, Debug block, …
• pipeline, multi-issue, multi-hart, …
• Custom extensions, CSRs, instructions

RISC-V Instructions (Standard ISA Architectural
Feature)
• There are many different instructions in the RV64 extensions:
• Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32
• Vector: 356, Bitmanip: 47 Krypto-scalar: 85
• P-DSP: 318
• For RV64 that is ~1,000 instructions…

• Each instruction needs SystemVerilog covergroups and coverpoints
• 10-200+ lines of SystemVerilog for each instruction

• 10,000-100,000++ lines of code to be written
• Not design or core specific

RV
VI

-T
RA

CE

Functions to convert
RVVI-TRACE to

Functional Coverage
structures

Functional Coverage
sampling

clk

…

…

RV
32

I

RV
32

M
RV

32
C

RV
32

F

RV
32

E

RV
32

D
RV

32
B

RV
32

Ks
RV

32
V

RV
32

P

RV
32

A

RV
64

I

RV
64

M

RV
64

C
RV

64
F

RV
64

E

RV
64

D
RV

64
B

RV
64

Ks
RV

64
V

RV
64

P

RV
64

A

Ex
ce

pt
io

ns
In

te
rr

up
ts

De
bu

g

Ex
ce

pt
io

ns
In

te
rr

up
ts

De
bu

g

U
se

r d
ef

in
ed

U
se

r d
ef

in
ed

M
M

U
M

M
U

Hy
pe

rv
iso

r
Hy

pe
rv

iso
r

Hand coded
SystemVerilog

Imperas RVFCgen

…

Generated SystemVerilog source

RISC-V
privilege and un-privilege

ISA machine readable
definition

Configuration:
xlen, csr, csrFields,

compliance, DV
extensions, options, …

RV
32

PM
P

RV
64

PM
P

RV
32

CS
R

RV
64

CS
R

Machine-generated Functional Coverage

riscvISACOV
https://github.com/riscv-verification/riscvISACOV

• Machine-generated functional coverage code for the RISC-V ISA
Feb. 2023 status:
• Extensions covered: 53
• Instructions covered: 559
• Covergroups: 559
• Coverpoints: 5036

• Well documented in markdown
• Includes verification plan information in csv format
• RV32I extension available open source under Apache
• Other extensions available under Imperas Proprietary license

https://github.com/riscv-verification/riscvISACOV

riscvISACOV: Coverage levels
• Compliance basic

• Essential items to be covered
• e.g. number of times instruction is executed, register values

• Compliance extended
• Cross coverage using basic coverpoints
• e.g. cross floating point register values with rounding modes

• DV Unprivileged basic
• Essential and cross coverage involving unprivileged mode items
• e.g. FPU special values for registers

(there are also 3 more comprehensive DV levels - WIP)

riscvISACOV: Documentation and VPlans
• Auto-generated documentation and csv files

for inclusion in Verification Plans

Functional Coverage Examples

• riscvISACOV
• https://github.com/riscv-verification/riscvISACOV

• OpenHW Group core-v-verif
• https://github.com/openhwgroup/core-v-

verif/tree/master/cv32e40s/env/uvme/cov

https://github.com/riscv-verification/riscvISACOV
https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov
https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Verification Case Study – CV32E40X

• OpenHW Group CV32E40X RISC-V core
• 4 stage pipeline, embedded class core:

• RV32I, RV32E
• [M|Zmmul][A]Zca_Zcb_Zcmb_Zcmp_Zcmt[Zba_Zbb_Zbs|Zba_Zbb_Zbc_Zbs]ZicntrZihpm

ZicsrZifence
• X interface

• Evolved from work on the CV32E40P core (originated from Pulp platform)
• Focus of OpenHW Group is high-quality cores verified to industry standards

• CORE-V-VERIF environment modified to use ImperasDV in fall 2022

CORE-V-VERIF using ImperasDV

Demonstration

• DUT: OpenHW Group CV32E40X RISC-V processor
• Simulation: passing test
• Simulation: failing test
• Simulation: asynchronous event bug

• Screenshots from the video demonstration now follow

VIDEO: Asynchronous

• 4:38

Verification Case Study – HMC/OSU Wally

• Overview of the core
• Testbench with RVVI, ImperasDV
• Demonstration runs
• Current status

Verification Case Studies
• Wally RISC-V core
• Configurable core:

• RV32I, RV32E, RV64I, RV64E
• A, C, F, D, M extensions, privileged modes, CSRs
• MMU/TLB virtual memory, caches

• Developed at Harvey Mudd College / Oklahoma State University
• Focus is high quality core for processor architecture education

• Status in January 2023 – before starting to use ImperasDV for verification:
• passing all RISC-V International compliance tests, Imperas compatibility tests

• Using Compliance Level post sim signature file compare
• boots Linux

• now in OpenHW as CORE-V Wally (https://github.com/openhwgroup/cvw)

https://github.com/openhwgroup/cvw

Wally + ImperasDV

• RVVI Tracer: 1/2 day of effort
• Testbench: 1/2 day of

integration
• 2 days effort resolve

tracer/integration issues

Wally: RVVI, ImperasDV: base use model: verification

program.elf Simulation
control

Testbench

RV
VI

-T
RA

CE
RV

VI
-A

PI

Tr
ac

er

RISC-V
Reference

Model

ImperasDV

Wally RISC-V
Core
RTL

(DUT)

Wally SoC

Simulation
memory

Imperas RISC-V
Verification IP

Imperas RISC-V
Functional Coverage

riscvISACOV

Pass/Fail

Wally: RVVI, ImperasDV: verification with coverage

Simulation
control

Testbench

RV
VI

-T
RA

CE
RV

VI
-A

PI

Tr
ac

er

RISC-V
Reference

Model

ImperasDV

Wally RISC-V
Core
RTL

(DUT)

Wally SoC

Simulation
memoryprogram.elf

Imperas RISC-V
Verification IP

Imperas RISC-V
Functional Coverage

riscvISACOV

coverage

Pass/Fail

Wally: RVVI, ImperasDV: verification with compliance suite &
merged coverage

coverage

merged coverage report

Pass/Fail
Pass/Fail

Pass/Fail
Pass/Fail

program.elf

Compliance tests

Wally: RVVI, ImperasDV: verification with compliance suites & Google riscv-dv
ISG & merged coverage

coverage

merged coverage report

Pass/Fail
Pass/Fail

Pass/Fail
Pass/Fail

program.elf

Compliance tests

program.elf

Wally: RVVI, ImperasDV: verification with compliance suites & Google
riscv-dv ISG & directed tests & merged coverage

coverage

merged coverage report

Pass/Fail
Pass/Fail

Pass/Fail
Pass/Fail

program.elf

Compliance tests

program.elf

program.elf

Wally directed tests

Wally + RVVI + ImperasDV – Status (Feb. 2023)
• RVVI Tracer: 1/2 day of effort
• Testbench: 1/2 day of

integration
• 2 days effort resolve

tracer/integration
• Results:
• 20+ bugs found almost

immediately
• With improving functional

coverage analysis
• Stimulus: riscv-dv

Agenda
• Introduction to Imperas
• Introduction to RISC-V
• RISC-V processor verification challenges

• Why is RISC-V processor DV so critical?
• RISC-V processor verification environment components
• RISC-V Verification approaches
• RISC-V Verification standards
• RISC-V Verification IP
• Functional coverage for RISC-V processors
• Verification Case studies

• OpenHW Group CV32E40X processor
• Wally RISC-V processor

• Summary

Summary

• Processor verification requires unique approaches to ensure the
quality of the processor IP
• The verification method chosen will impact the processor’s quality
• Open standards such as RVVI permit efficiency, reuse, and

development of RISC-V processor VIP
• The RISC-V ISA is an excellent application for machine-generated

functional coverage (e.g. riscvISACOV)
• ImperasDV RISC-V VIP enables a comprehensive processor DV

environment that works out of the box

Questions

• Thank you

• Aimee Sutton aimees@imperas.com
• Lee Moore moore@imperas.com
• Simon Davidmann simond@imperas.com

mailto:aimees@imperas.com
mailto:moore@imperas.com
mailto:SimonD@imperas.com

