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Abstract—Critical Real-Time Embedded Systems for industries 

such as railway, aerospace, automotive and energy face multiple 

challenges including the growing need to support mixed-criticality 

applications, power and timing restrictions, and a need to develop 

and test these complex devices and the accompanying software. 

The approach adopted by the SAFEPOWER project was to 

develop a SoC architecture including a NoC, plus the hypervisor 

to support spatial and/or temporal isolation of the various 

functional units. Advantages of this hardware/software 

architecture include the increased isolation provided by using both 

spatial and temporal isolation and the adaptability of this 

architecture to changing conditions. This paper discusses the 

virtual platform methodology employed by SAFEPOWER. 

Unique tools developed to provide observability into the 

hypervisor-based system are described, as well as the methods for 

providing timing and power estimation with sufficient accuracy. 

Keywords—Virtual Platform, SAFEPOWER, Safety Critical, 

Low Power 

I.  INTRODUCTION 

Critical Real-Time Embedded Systems (CRTES) 
for industries such as railway, aerospace, automotive 
and energy generation face multiple challenges 
including the growing need to support mixed-
criticality applications, power and timing restrictions 
and a need to develop and test these complex devices 
and the accompanying software.  Currently these 
systems use multiple devices, which enables a divide-
and-conquer approach to the specifications but does 
not reduce the overall complexity of the system, and 
the multiple devices limit the power reduction that 
can be achieved.   

The obvious hardware approach is to use a single 
device.  Integrating and partitioning mixed-criticality 
applications on a single target device can save costs 
and overall power consumption.  The question of 
overall device architecture to support mixed-

criticality systems, including both the hardware and 
software, remains to be answered.   

One approach to this is to use time-triggered 
hypervisor management for separate control of tasks 
and functions with different levels of criticality.  
These systems can then both adapt to changing 
conditions and deliver the required performance with 
the appropriate level of safety on tasks with varying 
performance and safety requirements.  This is the 
approach adopted by the SAFEPOWER project [1].  

The SAFEPOWER initiative enables the 
development of mixed-criticality systems with low 
power in combination with safety and real-time 
advantages by providing a reference architecture, 
platforms and tools to facilitate the development, 
testing and validation of such systems.  The 
SAFEPOWER reference architecture [6, 7] addresses 
the integration and partitioning of mixed-criticality 
applications on a single device, with a target of 
reducing total power consumption by up to 50% 
compared to a non-integrated multi-chip 
implementation.  Example systems included within 
the SAFEPOWER project include aircraft flight 
controls, a quadcopter drone with auto tracking 
camera and auto flight controls, and a wireless train 
signal control box. 

The SAFEPOWER project chose the Xilinx Zynq 
SoC FPGA as a hardware platform that was both 
well-known and flexible for the exploration and 
development of mixed-criticality systems.  While the 
hardware platform is well-known, methodologies for 
the development, debug analysis and test of the 
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individual applications running on hypervisors are 
not established, nor are the methods for analyzing and 
optimizing the fully integrated system.  Hypervisors 
provide the separation of applications and tasks 
necessary for mixed-criticality systems, however, 
that very separation makes hardware-based software 
development challenging due to the lack of visibility 
into and across the hypervisor containers.   

A software simulation approach was chosen by the 
project to provide the needed visibility.  To optimize 
the power efficiency of the end system the software 
methodology needs to include considerations for both 
timing and power estimation.  Current cycle accurate 
simulation techniques, while accurate, are considered 
too slow for software development. Using a design 
flow based on instruction accurate virtual platforms 
allows rapid software development and includes the 
power and timing estimates based on using profiles 
based on actual hardware observed results. 

This paper discusses the virtual platform based 
methodology implemented by the SAFEPOWER 
project for developing mixed-criticality systems 
based on time-triggered hypervisor management.  
Unique tools specifically developed to enable the 
virtual platform to provide the needed observability 
into the hypervisor-based system operation are 
described, as well as the methods for providing 
timing and power estimation with sufficient accuracy 
in the instruction accurate simulation environment.  
The test results show a useful correlation that allows 
for software development to include and anticipate 
the power impact throughout the design cycle. 

II. SAFEPOWER ARCHITECTURE 

The architecture of the SAFEPOWER platform 
(hardware and virtual platform) is shown in Fig. 1.  A 
tile-based architecture was used, with the tiles 
connected via a time-triggered Network on Chip 
(NoC).  The tiles are managed by a Type 1 hypervisor 
[2].  This allows for an arbitrary number of user 
partitions.  There is also a special partition on the 
hypervisor for monitoring and controlling power 
management services, and the hypervisor includes 
support for time-triggered task management.   

The SAFEPOWER SoC includes both the 
hypervisor tile and bare metal tiles.  The bare metal 
tiles are connected to the time-triggered NoC, and 
implement a light version of the hypervisor 
application interface.  The time-triggered behavior is 

executed based on a pre-computed communication 
schedule that triggers the message injection times [8].   

Architecting the SoC in this manner achieves both 
the spatial isolation and temporal independence 
required in safety standards such as IEC-61508.  This 
time-triggered architecture provides deterministic 
scheduling of software tasks, with Worst Case 
Execution Time (WCET) analysis supporting the 
achievement of timing requirements.  

A. SAFEPOWER Hardware 

The SAFEPOWER project chose to use a Xilinx 
Zynq 7000 board.  The Zynq 7000 device includes an 
Arm Cortex-A9MPx2 (dual core) Processor 
Subsystem (PS), plus the Programmable Logic (PL) 
FPGA fabric.  The PL was used to create the NoC 
communication network and MicroBlaze based tiles 
(subsystems). Each tile was comprised of the 
MicroBlaze processor, memory, a NoC 
communication node and power management logic. 
Two tiles were typically implemented in the hardware 
PL, while number of tiles was not limited on the 
virtual platform.  Various I/O formats and protocols 
are also supported on the Zynq.  The platform 
hierarchy and NoC are shown in Figs. 2 and 3.  

There is fixed connectivity between the PS and 
PL, with address mapped memory and GPIO used.  

Key pieces were the power monitoring 
components for obtaining feedback of the real-time 
current and voltage values and the voltage and clock 
control. These allowed the implementation of 
Dynamic Voltage and Frequency Scaling (DVFS) for 
dynamically changing the system voltages and the 
processor clock frequency in order to minimize 
power consumption.   

 
Fig. 1.  SAFEPOWER reference architecture [7]. 
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III. VIRTUAL PLATFORM TECHNOLOGY 

A. Instruction Accurate Software Simulation 

Just-in-time (JIT) code translating simulators are 
now widely recognized to be the fastest and most 
powerful tools for development of instruction 
accurate virtual platforms. A single-threaded JIT-

based simulator is typically capable of delivering 
simulation performance of billions of simulated 
instructions per second.  Virtual platform simulators 
operate by dividing time into quanta, of fixed or 
variable size, specified by the platform user.  For 
multiple processor platforms, each processor is 
simulated in turn for a quantum.  When all processors 

 
Fig. 2.  Platform hierarchy block diagram [7]. 

 
Fig. 3.  NoC for the platform [7]. 



have finished the quantum, time is advanced and 
simulation resumes for the first processor in the next 
quantum. 

B. Running Software on the Virtual Platform 

One of the key advantages of the instruction 
accurate virtual platform is that it can execute the 
same binaries that would execute on the hardware.  
Software is compiled using the same toolchain and 
libraries to generate ELF and binary files that can be 
loaded and executed on the virtual platform.  The JIT 
simulator translates the Arm, MIPS, RISC-V, etc. 
instruction to a x86 instruction(s) to be executed on 
the host PC.   

During this translation phase, additional x86 
instructions can be added to support analysis of the 
software application executing using a binary 
interception technique. Because the analysis tools are 
added during this translation process, the tools are 
“non-intrusive”, in that there is no instrumentation or 
modification of the source code, and no change to the 
order of instruction execution for the binary.  

IV. VIRTUAL PLATFORM BASED TOOLS FOR 

SOFTWARE AND SYSTEM ANALYSIS 

The virtual platform environment used for this 
project was the Imperas M*SDK [3] product, 
utilizing models built using the Open Virtual 
Platforms (OVP) APIs and model library [4].   

A. Open Virtual Platforms Models 

Open Virtual Platforms is a website containing the 
OVP APIs, the OVP model library and a reference 
simulator, OVPsim.  Where there were existing 
models in the OVP library for components, such as 
for the Arm Cortex-A9 and Xilinx MicroBlaze 
processors, those models were used.  Otherwise, new 
models were built, including the network interface 
and various peripherals.  The overall platform model 
was hierarchical, enabling easy debugging of 
individual tiles prior to assembly into the complete 
platform.   

The OVP models are open source, distributed 
under the Apache 2.0 open source license.   

The virtual platform models are instruction 
accurate versions of the actual hardware used.   

B. MultiProcessor Debugger 

The M*SDK product includes a MultiProcessor 
Debugger (MPD), which supports debug of 

heterogeneous multiprocessor platforms, and also 
supports introspection of peripheral components, all 
within a single debug session.  This introspection 
enables, for example, the setting of breakpoints on the 
registers of a peripheral, allowing for the co-debug of 
peripherals and drivers.   

MPD also allows viewing the software at various 
levels of abstraction, including hypervisor, operating 
system, drivers, firmware and user applications.   

MPD can be run from the command line, or 
controlled using an Eclipse user interface.   

C. Verification, Analysis and Profiling Tools 

The M*SDK Verification, Analysis and Profiling 
(VAP) tools include features such as tracing 
(instruction, function, variable, register changes, …), 
code coverage, profiling, memory monitoring, 
protocol checking and assertion checking.  OS-aware 
tools are also included, enabling OS task tracing and 
scheduler analysis.  Users can also create custom 
analysis tools using the binary interception 
(“SlipStreamer”) API.   

D. Timing Estimation 

While the virtual platform is instruction accurate, 
not cycle accurate, timing estimation can be achieved 
by annotating the instructions being executed using 
the binary interception technology [5].  This timing 
estimation capability certainly has limitations, such 
as not supporting out-of-order pipelines.  However, it 
can provide estimates to an accuracy of +/- 10%, and 
supports timing analysis for individual instructions, 
data-dependent instructions, sequence-dependent 
instructions, different latencies for different memory 
regions and delays due to cache hit/miss analysis.   

E. Power Estimation 

Power estimation is achieved in much the same 
way as timing estimation, by annotating the 
instruction stream [9].   

V. RESULTS 

Both railway and avionics use cases were tested.  
The avionics system is shown in Fig. 4. The 
objectives of the testing were to 1) demonstrate that 
the software components interact correctly with each 
other and with the hardware; 2) verify that the entire 
system complies with the requirements – functional 
and extra-functional, also when including low power 
techniques – of the use case specification; and 3) 
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show that power savings can be achieved for safety 
critical applications in different domains.    

Key challenges for the virtual platform 
environment include the modeling of the DVFS 
subsystem, fault injection testing and supporting the 
time-triggered system. These are discussed below.  

For the tests that could be run on both the virtual 
platform and the hardware, the results were 
equivalent.   

A. DVFS Subsystem 

Dynamic Voltage and Frequency Scaling (DVFS) 
is, as the name implies, a dynamic process.  The 
power estimation cannot be done by post-processing 
the instruction trace; instead, the power estimation 
has to be done in real time in the simulation 
environment.  Then the DVFS module [10, 11] must 
do the calculations and make any adjustments, also in 
real time.   

The block diagram of the virtual platform is shown 
in Fig. 5. The DVFS subsystem is implemented in a 
binary interception library, with the power model as 
a module in the intercept library.  The power sensors 
are real data input into the simulation via an I2C 
peripheral model.   

Fig. 6 shows the subsystem at work, with the 
virtual platform executing Linux at an initial 

frequency, then calculating the power consumption 
and changing the operating frequency of the 
simulated platform by changing the simulation speed 
of the processor.  

B. Fault Injection Testing 

Fault injection is a common and necessary testing 
method for embedded systems in high reliability 
systems, including the safety critical systems 
considered in the SAFEPOWER project.  The fault 
injection framework needs to be able to inject 
different types of faults, and also to inject the faults at 
different times.   

The types of faults supported in the framework 
include memory corruption, GPIO corruption, faults 
in the switch partition scheduler, in resetting of the 
various processors and in uncontrolled interrupts.  
The implementation was done via an intercept 
library, with a simple user interface built to help 
control the fault campaigns.  This user interface is 
shown in Fig. 7.   

C. Support for Time-Triggered System 

The default scheduler for the simulator is a “round 
robin” scheduler, which executes a quantum of 
instructions on one processor, then moves to the next 
to do the same, and continues in that manner until 
resuming the instruction execution on the first 

 
Fig. 4.  Avionics use case block diagram [7]. 



processor.  This provides functionally correct results, 
however, it provides little in the way of timing 
reference points.  The SAFEPOWER system is a 
time-triggered system, with the synchronization 
defined statically.  These time triggers do not always 
align with the boundaries of the quanta of instructions 
being executed.   

The solution was to develop a new scheduler for 
the simulator [12], a time-triggered scheduler, with 
which applications are executed until the next event.  
Using this scheduler, execution is scheduled to 

complete a task, and the scheduler can detect the 
synchronization points in the code.   

The comparison between quantum-based 
scheduling and time-triggered scheduling is shown in 
Fig. 8.  

VI. CONCLUSIONS 

Since the results for virtual platform based testing 
were equivalent to those for hardware based testing, 
and since the virtual platform testing used the same 

 
Fig. 5.  Block diagram of the DVFS subsystem. 

 
Fig. 6.  DVFS subsystem results, showing a reduction in operating frequency to reduce power consumption. 
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binaries, virtual platform testing can be utilized in the 
test and certification of safety critical systems.  

Additionally, the virtual platform provided 
benefits over the use of the hardware platform for the 
development, debug, analysis and verification of 
software.  These benefits included  

• Execution control:  Simulation is deterministic 

• Unified debug environment:  Simultaneous 
debug of all application code executing on all 
processors in the platform, including access to 
peripherals 

• Non-intrusive analysis tools:  Tools such as 
profiling, code coverage, dynamic assertions, 
etc. are implemented with no modification or 
instrumentation of source code  

• Power Interface Library, implemented using 
Imperas SlipStreamer API (binary 
interception), enabled support for real time 
power management techniques such as DVFS 
within the virtual platform environment 

• Fault injection:  The virtual platform provides 
visibility and observability, so faults can be 
injected anywhere in the platform, e.g. memory 
and processor registers. Fault injection is 
implemented by an external library, so fault 
generation can be deterministically controlled. 
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