
www.embedded-world.eu

Virtual Platform Based Development Environments

for Low Power, Mixed Level Safety Critical System

Duncan Graham and Larry Lapides

Imperas Software Ltd.

Oxford, United Kingdom

LarryL@imperas.com

Sören Schreiner and Kim Grüttner

OFFIS - Institute for Information Technology

Oldenburg, Germany

Abstract—Critical Real-Time Embedded Systems for industries

such as railway, aerospace, automotive and energy face multiple

challenges including the growing need to support mixed-criticality

applications, power and timing restrictions, and a need to develop

and test these complex devices and the accompanying software.

The approach adopted by the SAFEPOWER project was to

develop a SoC architecture including a NoC, plus the hypervisor

to support spatial and/or temporal isolation of the various

functional units. Advantages of this hardware/software

architecture include the increased isolation provided by using both

spatial and temporal isolation and the adaptability of this

architecture to changing conditions. This paper discusses the

virtual platform methodology employed by SAFEPOWER.

Unique tools developed to provide observability into the

hypervisor-based system are described, as well as the methods for

providing timing and power estimation with sufficient accuracy.

Keywords—Virtual Platform, SAFEPOWER, Safety Critical,

Low Power

I. INTRODUCTION

Critical Real-Time Embedded Systems (CRTES)
for industries such as railway, aerospace, automotive
and energy generation face multiple challenges
including the growing need to support mixed-
criticality applications, power and timing restrictions
and a need to develop and test these complex devices
and the accompanying software. Currently these
systems use multiple devices, which enables a divide-
and-conquer approach to the specifications but does
not reduce the overall complexity of the system, and
the multiple devices limit the power reduction that
can be achieved.

The obvious hardware approach is to use a single
device. Integrating and partitioning mixed-criticality
applications on a single target device can save costs
and overall power consumption. The question of
overall device architecture to support mixed-

criticality systems, including both the hardware and
software, remains to be answered.

One approach to this is to use time-triggered
hypervisor management for separate control of tasks
and functions with different levels of criticality.
These systems can then both adapt to changing
conditions and deliver the required performance with
the appropriate level of safety on tasks with varying
performance and safety requirements. This is the
approach adopted by the SAFEPOWER project [1].

The SAFEPOWER initiative enables the
development of mixed-criticality systems with low
power in combination with safety and real-time
advantages by providing a reference architecture,
platforms and tools to facilitate the development,
testing and validation of such systems. The
SAFEPOWER reference architecture [6, 7] addresses
the integration and partitioning of mixed-criticality
applications on a single device, with a target of
reducing total power consumption by up to 50%
compared to a non-integrated multi-chip
implementation. Example systems included within
the SAFEPOWER project include aircraft flight
controls, a quadcopter drone with auto tracking
camera and auto flight controls, and a wireless train
signal control box.

The SAFEPOWER project chose the Xilinx Zynq
SoC FPGA as a hardware platform that was both
well-known and flexible for the exploration and
development of mixed-criticality systems. While the
hardware platform is well-known, methodologies for
the development, debug analysis and test of the

This work has been partially supported by the SAFEPOWER project with
funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No. 646531.

individual applications running on hypervisors are
not established, nor are the methods for analyzing and
optimizing the fully integrated system. Hypervisors
provide the separation of applications and tasks
necessary for mixed-criticality systems, however,
that very separation makes hardware-based software
development challenging due to the lack of visibility
into and across the hypervisor containers.

A software simulation approach was chosen by the
project to provide the needed visibility. To optimize
the power efficiency of the end system the software
methodology needs to include considerations for both
timing and power estimation. Current cycle accurate
simulation techniques, while accurate, are considered
too slow for software development. Using a design
flow based on instruction accurate virtual platforms
allows rapid software development and includes the
power and timing estimates based on using profiles
based on actual hardware observed results.

This paper discusses the virtual platform based
methodology implemented by the SAFEPOWER
project for developing mixed-criticality systems
based on time-triggered hypervisor management.
Unique tools specifically developed to enable the
virtual platform to provide the needed observability
into the hypervisor-based system operation are
described, as well as the methods for providing
timing and power estimation with sufficient accuracy
in the instruction accurate simulation environment.
The test results show a useful correlation that allows
for software development to include and anticipate
the power impact throughout the design cycle.

II. SAFEPOWER ARCHITECTURE

The architecture of the SAFEPOWER platform
(hardware and virtual platform) is shown in Fig. 1. A
tile-based architecture was used, with the tiles
connected via a time-triggered Network on Chip
(NoC). The tiles are managed by a Type 1 hypervisor
[2]. This allows for an arbitrary number of user
partitions. There is also a special partition on the
hypervisor for monitoring and controlling power
management services, and the hypervisor includes
support for time-triggered task management.

The SAFEPOWER SoC includes both the
hypervisor tile and bare metal tiles. The bare metal
tiles are connected to the time-triggered NoC, and
implement a light version of the hypervisor
application interface. The time-triggered behavior is

executed based on a pre-computed communication
schedule that triggers the message injection times [8].

Architecting the SoC in this manner achieves both
the spatial isolation and temporal independence
required in safety standards such as IEC-61508. This
time-triggered architecture provides deterministic
scheduling of software tasks, with Worst Case
Execution Time (WCET) analysis supporting the
achievement of timing requirements.

A. SAFEPOWER Hardware

The SAFEPOWER project chose to use a Xilinx
Zynq 7000 board. The Zynq 7000 device includes an
Arm Cortex-A9MPx2 (dual core) Processor
Subsystem (PS), plus the Programmable Logic (PL)
FPGA fabric. The PL was used to create the NoC
communication network and MicroBlaze based tiles
(subsystems). Each tile was comprised of the
MicroBlaze processor, memory, a NoC
communication node and power management logic.
Two tiles were typically implemented in the hardware
PL, while number of tiles was not limited on the
virtual platform. Various I/O formats and protocols
are also supported on the Zynq. The platform
hierarchy and NoC are shown in Figs. 2 and 3.

There is fixed connectivity between the PS and
PL, with address mapped memory and GPIO used.

Key pieces were the power monitoring
components for obtaining feedback of the real-time
current and voltage values and the voltage and clock
control. These allowed the implementation of
Dynamic Voltage and Frequency Scaling (DVFS) for
dynamically changing the system voltages and the
processor clock frequency in order to minimize
power consumption.

Fig. 1. SAFEPOWER reference architecture [7].

www.embedded-world.eu

III. VIRTUAL PLATFORM TECHNOLOGY

A. Instruction Accurate Software Simulation

Just-in-time (JIT) code translating simulators are
now widely recognized to be the fastest and most
powerful tools for development of instruction
accurate virtual platforms. A single-threaded JIT-

based simulator is typically capable of delivering
simulation performance of billions of simulated
instructions per second. Virtual platform simulators
operate by dividing time into quanta, of fixed or
variable size, specified by the platform user. For
multiple processor platforms, each processor is
simulated in turn for a quantum. When all processors

Fig. 2. Platform hierarchy block diagram [7].

Fig. 3. NoC for the platform [7].

have finished the quantum, time is advanced and
simulation resumes for the first processor in the next
quantum.

B. Running Software on the Virtual Platform

One of the key advantages of the instruction
accurate virtual platform is that it can execute the
same binaries that would execute on the hardware.
Software is compiled using the same toolchain and
libraries to generate ELF and binary files that can be
loaded and executed on the virtual platform. The JIT
simulator translates the Arm, MIPS, RISC-V, etc.
instruction to a x86 instruction(s) to be executed on
the host PC.

During this translation phase, additional x86
instructions can be added to support analysis of the
software application executing using a binary
interception technique. Because the analysis tools are
added during this translation process, the tools are
“non-intrusive”, in that there is no instrumentation or
modification of the source code, and no change to the
order of instruction execution for the binary.

IV. VIRTUAL PLATFORM BASED TOOLS FOR

SOFTWARE AND SYSTEM ANALYSIS

The virtual platform environment used for this
project was the Imperas M*SDK [3] product,
utilizing models built using the Open Virtual
Platforms (OVP) APIs and model library [4].

A. Open Virtual Platforms Models

Open Virtual Platforms is a website containing the
OVP APIs, the OVP model library and a reference
simulator, OVPsim. Where there were existing
models in the OVP library for components, such as
for the Arm Cortex-A9 and Xilinx MicroBlaze
processors, those models were used. Otherwise, new
models were built, including the network interface
and various peripherals. The overall platform model
was hierarchical, enabling easy debugging of
individual tiles prior to assembly into the complete
platform.

The OVP models are open source, distributed
under the Apache 2.0 open source license.

The virtual platform models are instruction
accurate versions of the actual hardware used.

B. MultiProcessor Debugger

The M*SDK product includes a MultiProcessor
Debugger (MPD), which supports debug of

heterogeneous multiprocessor platforms, and also
supports introspection of peripheral components, all
within a single debug session. This introspection
enables, for example, the setting of breakpoints on the
registers of a peripheral, allowing for the co-debug of
peripherals and drivers.

MPD also allows viewing the software at various
levels of abstraction, including hypervisor, operating
system, drivers, firmware and user applications.

MPD can be run from the command line, or
controlled using an Eclipse user interface.

C. Verification, Analysis and Profiling Tools

The M*SDK Verification, Analysis and Profiling
(VAP) tools include features such as tracing
(instruction, function, variable, register changes, …),
code coverage, profiling, memory monitoring,
protocol checking and assertion checking. OS-aware
tools are also included, enabling OS task tracing and
scheduler analysis. Users can also create custom
analysis tools using the binary interception
(“SlipStreamer”) API.

D. Timing Estimation

While the virtual platform is instruction accurate,
not cycle accurate, timing estimation can be achieved
by annotating the instructions being executed using
the binary interception technology [5]. This timing
estimation capability certainly has limitations, such
as not supporting out-of-order pipelines. However, it
can provide estimates to an accuracy of +/- 10%, and
supports timing analysis for individual instructions,
data-dependent instructions, sequence-dependent
instructions, different latencies for different memory
regions and delays due to cache hit/miss analysis.

E. Power Estimation

Power estimation is achieved in much the same
way as timing estimation, by annotating the
instruction stream [9].

V. RESULTS

Both railway and avionics use cases were tested.
The avionics system is shown in Fig. 4. The
objectives of the testing were to 1) demonstrate that
the software components interact correctly with each
other and with the hardware; 2) verify that the entire
system complies with the requirements – functional
and extra-functional, also when including low power
techniques – of the use case specification; and 3)

www.embedded-world.eu

show that power savings can be achieved for safety
critical applications in different domains.

Key challenges for the virtual platform
environment include the modeling of the DVFS
subsystem, fault injection testing and supporting the
time-triggered system. These are discussed below.

For the tests that could be run on both the virtual
platform and the hardware, the results were
equivalent.

A. DVFS Subsystem

Dynamic Voltage and Frequency Scaling (DVFS)
is, as the name implies, a dynamic process. The
power estimation cannot be done by post-processing
the instruction trace; instead, the power estimation
has to be done in real time in the simulation
environment. Then the DVFS module [10, 11] must
do the calculations and make any adjustments, also in
real time.

The block diagram of the virtual platform is shown
in Fig. 5. The DVFS subsystem is implemented in a
binary interception library, with the power model as
a module in the intercept library. The power sensors
are real data input into the simulation via an I2C
peripheral model.

Fig. 6 shows the subsystem at work, with the
virtual platform executing Linux at an initial

frequency, then calculating the power consumption
and changing the operating frequency of the
simulated platform by changing the simulation speed
of the processor.

B. Fault Injection Testing

Fault injection is a common and necessary testing
method for embedded systems in high reliability
systems, including the safety critical systems
considered in the SAFEPOWER project. The fault
injection framework needs to be able to inject
different types of faults, and also to inject the faults at
different times.

The types of faults supported in the framework
include memory corruption, GPIO corruption, faults
in the switch partition scheduler, in resetting of the
various processors and in uncontrolled interrupts.
The implementation was done via an intercept
library, with a simple user interface built to help
control the fault campaigns. This user interface is
shown in Fig. 7.

C. Support for Time-Triggered System

The default scheduler for the simulator is a “round
robin” scheduler, which executes a quantum of
instructions on one processor, then moves to the next
to do the same, and continues in that manner until
resuming the instruction execution on the first

Fig. 4. Avionics use case block diagram [7].

processor. This provides functionally correct results,
however, it provides little in the way of timing
reference points. The SAFEPOWER system is a
time-triggered system, with the synchronization
defined statically. These time triggers do not always
align with the boundaries of the quanta of instructions
being executed.

The solution was to develop a new scheduler for
the simulator [12], a time-triggered scheduler, with
which applications are executed until the next event.
Using this scheduler, execution is scheduled to

complete a task, and the scheduler can detect the
synchronization points in the code.

The comparison between quantum-based
scheduling and time-triggered scheduling is shown in
Fig. 8.

VI. CONCLUSIONS

Since the results for virtual platform based testing
were equivalent to those for hardware based testing,
and since the virtual platform testing used the same

Fig. 5. Block diagram of the DVFS subsystem.

Fig. 6. DVFS subsystem results, showing a reduction in operating frequency to reduce power consumption.

www.embedded-world.eu

binaries, virtual platform testing can be utilized in the
test and certification of safety critical systems.

Additionally, the virtual platform provided
benefits over the use of the hardware platform for the
development, debug, analysis and verification of
software. These benefits included

• Execution control: Simulation is deterministic

• Unified debug environment: Simultaneous
debug of all application code executing on all
processors in the platform, including access to
peripherals

• Non-intrusive analysis tools: Tools such as
profiling, code coverage, dynamic assertions,
etc. are implemented with no modification or
instrumentation of source code

• Power Interface Library, implemented using
Imperas SlipStreamer API (binary
interception), enabled support for real time
power management techniques such as DVFS
within the virtual platform environment

• Fault injection: The virtual platform provides
visibility and observability, so faults can be
injected anywhere in the platform, e.g. memory
and processor registers. Fault injection is
implemented by an external library, so fault
generation can be deterministically controlled.

ACKNOWLEDGMENT

The authors wish to give thanks to all the
organizations that participated in SAFEPOWER,
both universities and commercial companies.

REFERENCES

[1] SAFEPOWER project website: https://safepower-project.eu/

[2] T. Poggi et al., "A Hypervisor Architecture for Low-Power Real-Time
Embedded Systems," 2018, 21st Euromicro Conference on Digital
System Design (DSD), https://doi.org/10.1109/DSD.2018.00054

[3] Imperas M*SDK see http://www.imperas.com/products

[4] Open Virtual Platforms (OVP) Library: http://www.ovpworld.org/library

[5] L. Moore, D. Graham, S. Davidmann, F. Rosa, “Cycle Approximate
Simulation of RISC-V Processors”, Embedded World 2018.
http://www.imperas.com/presentations

[6] M. Fakih et al., “SAFEPOWER project: Architecture for safe and power-
efficient mixed-criticality systems”, Microprocessors and Microsystems,
2017, https://doi.org/10.1016/j.micpro.2017.05.016

[7] M. Fakih et al., “Experimental Evaluation of SAFEPOWER Architecture
for Safe and Power-Efficient Mixed-Criticality Systems”, Journal of Low
Power Electronics and Applications, Special Issue "Ultra-low Power
Embedded Systems", 2019, https://dx.doi.org/10.3390/jlpea9010012

[8] R. Obermaisser et al., “Adaptive Time-Triggered Multi-Core
Architecture”, Journal of Designs, Special Issue "Challenges and
Directions Forward for Dealing with the Complexity of Future Smart
CPS)", 2019, https://doi.org/10.3390/designs3010007

[9] R. Görgen, D. Graham, K. Grüttner, L. Lapides, S. Schreiner, “Integrating
Power Models into Instruction Accurate Virtual Platforms for ARM-
based based MPSoCs”, ARM TechCon 2016

[10] S. Schreiner, M. Fakih, K. Grüttner, D. Graham, W. Nebel and S. P.
Frasquet, "A Functional Test Framework to Observe MPSoC Power
Management Techniques in Virtual Platforms," 2017 20th Euromicro
Conference on Digital System Design (DSD), https://doi:
10.1109/DSD.2017.14

Fig. 7. Fault injection user interface for configuration of fault injection

campaigns.

Fig. 8a. Quantum-based scheduling for the virtual platform.

Fig. 8b. Time-triggered scheduling for the virtual platform.

https://safepower-project.eu/
https://doi.org/10.1109/DSD.2018.00054
http://www.imperas.com/products
http://www.ovpworld.org/library
http://www.imperas.com/presentations
https://doi.org/10.1016/j.micpro.2017.05.016
https://dx.doi.org/10.3390/jlpea9010012
https://doi.org/10.3390/designs3010007

[11] S. Schreiner, R. Seyyedi, M. Fakih, K. Grüttner, W. Nebel, “Towards
power management verification of time-triggered systems using virtual
platforms”, SAMOS '18: Proceedings of the 18th International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, 2018, https://doi.org/10.1145/3229631.3235025

[12] R. Seyyedi, S. Schreiner, M. Fakih, K. Grüttner and W. Nebel,
"Functional Test Environment for Time-Triggered Control Systems in
Complex MPSoCs Using GALI," 2018 21st Euromicro Conference on
Digital System Design (DSD), https://doi.org/10.1109/DSD.2018.0001

https://doi.org/10.1145/3229631.3235025

	I. Introduction
	II. SAFEPOWER Architecture
	A. SAFEPOWER Hardware

	III. Virtual Platform Technology
	A. Instruction Accurate Software Simulation
	B. Running Software on the Virtual Platform

	IV. Virtual Platform Based Tools for Software and System Analysis
	A. Open Virtual Platforms Models
	B. MultiProcessor Debugger
	C. Verification, Analysis and Profiling Tools
	D. Timing Estimation
	E. Power Estimation

	V. Results
	A. DVFS Subsystem
	B. Fault Injection Testing
	C. Support for Time-Triggered System

	VI. Conclusions
	Acknowledgment
	References

