

Virtual Platforms for early Embedded Software Development

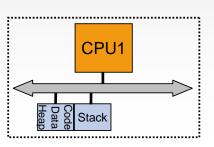
RISC-V 8th Workshop – Barcelona Wednesday May 09, 4:00pm

Kevin McDermott & Lee Moore – Imperas Software **Hugh O'Keeffe** – Ashling

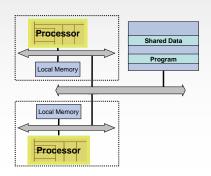
New Markets With New Software Requirements

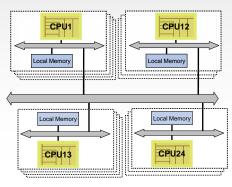
- Schedule
- Quality
- Reliability
- Security
- Safety

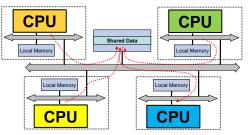
- Engineering productivity / automation
- Predictability on software development schedules
- Unknown / unmeasurable software delivery risk

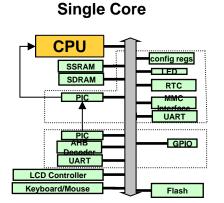

Virtual Platforms Accelerate Software Development

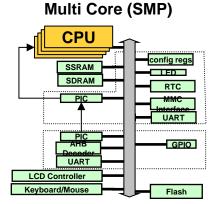
- A key to the adoption of RISC-V is Software
 - Need processors/platforms for software development
 - Start porting existing software to RISC-V
- Virtual platforms (software simulation)
 - Available months before hardware
 - Can be used in hardware verification
 - Can accelerate software porting and development
 - Can help bring up of software on new platforms
 - Support of RISC-V instruction extensions




Processor Platform Configurations


Single core, simple


Multi-core shared memory



Many-cores

Heterogeneous

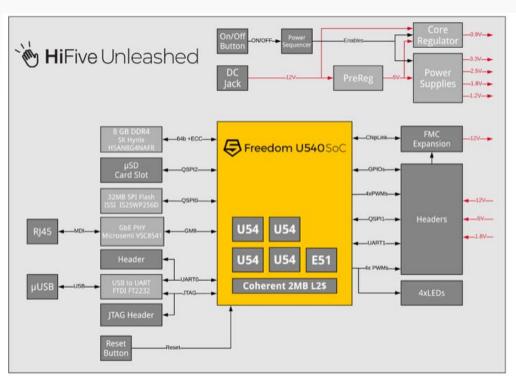
Booting OS, eg Linux

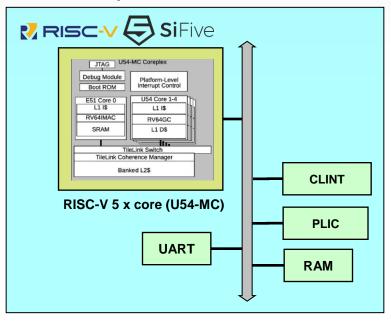


Extendable Platform Kits™ (EPKs™)

- EPKs are virtual platforms
 - with software set-up, help users to start quickly
- EPKs include
 - Individual models, binary and source
 - Platform model, binary and source
 - Software and/or OS running on platform
- 200+ Processor Models
- 50+ EPKs
- 100s of peripheral models available in the OVP Library
- All models are open source
 - Distributed under the Apache 2.0 open source license
- All models have both C and SystemC interfaces

- Peripherals: users define pins and registers, and functionality
- Platforms: users define memory, component connectivity



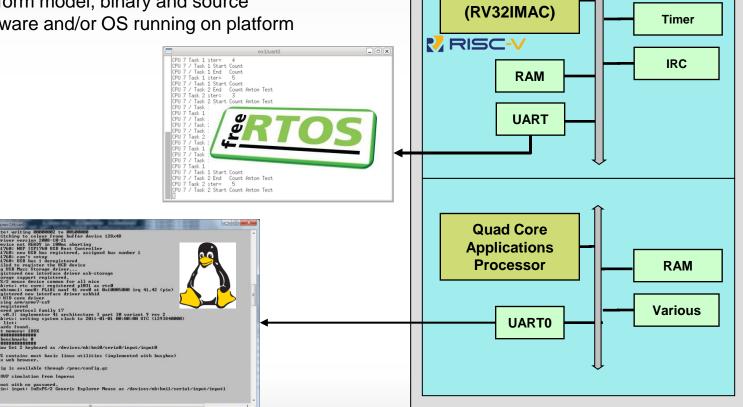

RISC-V EPK based on SiFive U54-MC

The Virtual Platform Provides a Simulation Environment Such That the Software Does Not Know That It Is Not Running On Hardware

https://www.sifive.com

Imperas U54-MC Virtual Platform

Under 10 seconds to get to booted Linux login prompt!



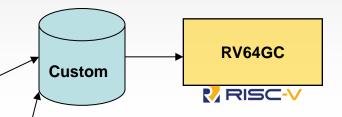
RISC-V EPK based on Andes N25 (RV32IMAC)

Extendable Platform Kits (EPKs) are virtual platforms, with software running, to help users start quickly

- EPKs include
 - Individual models, binary and source
 - Platform model, binary and source
 - Software and/or OS running on platform

ANDES

Andes N25



RISC-V EPK Custom Extensions

- Easy description of Custom Instruction extensions
- No disruption to existing underlying verified model

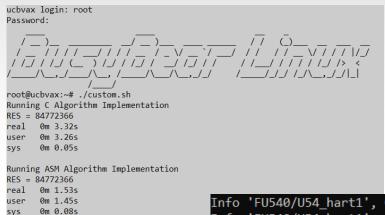
```
// Create the RISCV decode table
static vmidDecodeTableP createDecodeTable(void) {
   vmidDecodeTableP table = vmidNewDecodeTable(RISCV_BITS, RISCV_EIT_LAST);
   // opcode [6:0] = 00 010 11
   // func3[14:12] = 1,2,3,4 (QR1-4)
   // rs1[19:15]
   // rs2[24:20]
   // dst[11:7]
   // handle exchnage instruction
   DECODE_ENTRY(0, CHACHA20QR1, "|......000....0001011|");
   DECODE_ENTRY(0, CHACHA20QR2, "|......001....0001011|");
   DECODE_ENTRY(0, CHACHA20QR3, "|.....010.....0001011|");
   DECODE_ENTRY(0, CHACHA20QR4, "|......011....0001011|");
   return table;
// Emit code implementing exchange instruction
static void emitChaCha20(
    vmiProcessorP processor,
    vmiosObjectP object,
    Uns32
                  instruction,
    Uns32
                  rotl
) {
    // extract instruction fields
    Uns32 rd = RD(instruction);
    Uns32 rs1 = RS1(instruction);
    Uns32 rs2 = RS2(instruction);
    vmiReg reg_rs1 = vmimtGetExtReg(processor, &object->rs1);
    vmiReg reg rs2 = vmimtGetExtReg(processor, &object->rs2);
    vmiReg reg_tmp = vmimtGetExtTemp(processor, &object->tmp);
    vmimtGetR(processor, 64, reg_rs1, object->riscvRegs[rs1]);
    vmimtGetR(processor, 64, reg_rs2, object->riscvRegs[rs2]);
    vmimtBinopRRR(32, vmi_XOR, reg_tmp, reg_rs1, reg_rs2, 0);
    vmimtBinopRC(32, vmi_ROL, reg_tmp, rotl, 0);
    vmimtSetR(processor, 64, object->riscvRegs[rd], reg tmp);
```


- ChaCha20 cipher as example of custom instructions for algorithm accelerators
- Instruction Extensions to RISC-V courtesy of Cerberus Security Laboratories Ltd
- https://cerberus-laboratories.com

RISC-V EPK Missing Custom Extensions (FU540)

```
root@ucbvax:~# ./custom.sh
                                                                                                                   Linux
Running C Algorithm Implementation
RES = 84772366
real 0m 3.32s
      0m 3.23s
      0m 0.08s
Running ASM Algorithm Implementation
   12.945696] custom asm.exe[80]: unhandled signal 4 code 0x1 at 0x0000000000010402 in custom asm.exe[10000+6b000]
                                                                           4.15.0-00044-g2b0aa1d #2
   12.945696] CPU: 4 PID: 80 Comm: custom asm.exe Tainted: G
   12.945800] sepc: 000000000010402 ra : 00000000001043a sp : 0000003fff9b9c40
   12.945800] gp : 000000000007e0f0 tp : 000000000080700 t0 : 000000000000000
   12.9458001 t1:00000000000210de t2:00000000001000 s0:0000003fff9b9c70
   12.945800] s1 : 0000000000010a36 a0 : ffffffff84772366 a1 : 000000004c1fba97
   12.9459001 a2 : 000000000000004 a3 : 00000000000001 a4 : 00000000000001
   12.945900] a5 : 000000004c1fba97 a6 : 00000000000000 a7 : 0000003fff9b9c4c
   12.9459001 s2 : 0000000000000000 s3 : 0000003fff9c2dd0 s4 : 000000000000000
   12.9460001 s5: 0000003fff9c2f55 s6: 00000000000f0118 s7: 000000000000000
   12.9460001 s8: 000000000000014 s9: 00000020001b8720 s10: 000000000000000
   12.9460001 s11: 0000003fffa41fb6 t3: 0000000000000d t4: 000000000000000
   12.9460001
              t5 : 00000000000000062 t6 : 00000000000000078
   12.946100] sstatus: 0000000200002020 sbadaddr: 000000000b5050b scause: 000000000000000
Command terminated by signal 4
      0m 0.02s
      0m 0.00s
                                                     Info 'FU540/U54_hart1', 0x000000000015a76(fread+9e): 8082
      0m 0.02s
```

Console


Virtual Platform Console

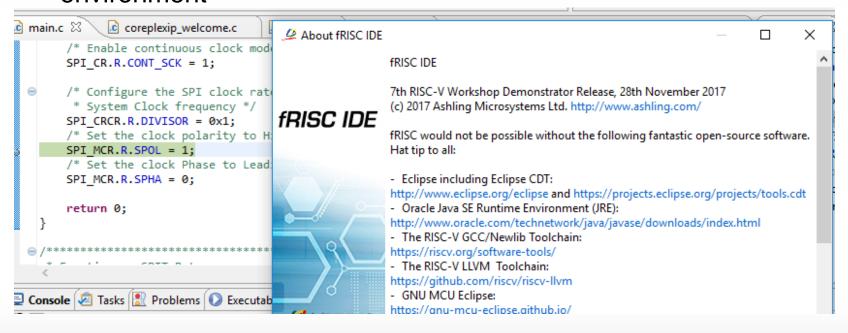
```
ra
Info 'FU540/U54 hart1', 0x00000000001043a(main+80): 87aa
                                                                       a5,a0
Info 'FU540/U54_hart1', 0x00000000001043c(main+82): ffcd
                                                                       a5,103f6
Info 'FU540/U54_hart1', 0x0000000000103f6(main+3c):                      fec42783 lw
                                                                       a5,-20(s0)
Info 'FU540/U54 hart1', 0x0000000000103fa(main+40): 853e
                                                                       a0,a5
Info 'FU540/U54_hart1', 0x0000000000103fc(main+42): fd842783 lw
                                                                       a5,-40(s0)
Info 'FU540/U54_hart1', 0x000000000010400(main+46): 85be
                                                                       a1,a5
Info 'FU540/U54 hart1', 0x000000000010402(main+48): 00b5050b undef
Info 'FU540/U54_hart1', 0x0000000080000004(trap_vector): 34011173 csrrw
                                                                            sp,mscratch,sp
Info 'FU540/U54_hart1', 0x0000000080000008(trap_vector+4): 1a010863 beqz
                                                                              sp,800001b8
Info 'FU540/U54 hart1', 0x000000008000000c(trap vector+8): 04a13823 sd
                                                                              a0.80(sp)
Info 'FU540/U54 hart1', 0x0000000080000010(trap vector+c): 04b13c23 sd
                                                                              a1,88(sp)
Info 'FU540/U54_hart1', 0x0000000080000014(trap_vector+10): 342025f3 csrr
                                                                               a1, mcause
Info 'FU540/U54 hart1', 0x0000000080000018(trap vector+14): 0805d263 bgez
                                                                               a1,8000009c
Info 'FU540/U54 hart1', 0x00000000800009c(trap vector+98): 00113423 sd
                                                                               ra,8(sp)
Info 'FU540/U54_hart1', 0x00000000800000a0(trap_vector+9c): 00313c23 sd
                                                                               gp, 24(sp)
Info 'FU540/U54 hart1', 0x00000000800000a4(trap vector+a0): 02413023 sd
                                                                               tp,32(sp)
```


RISC-V EPK Implemented Custom Extensions (FU540)

Linux Console

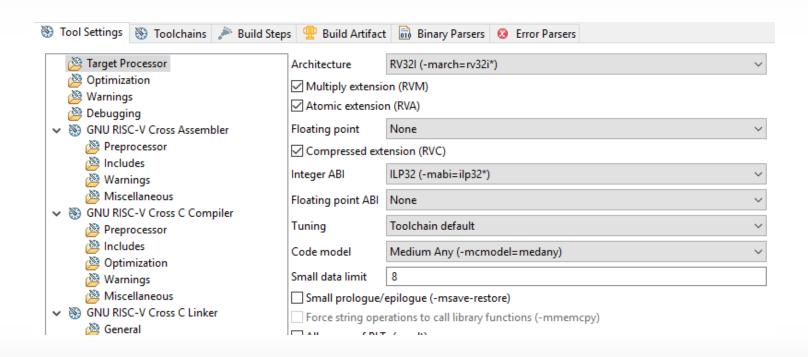
```
Info 'FU540/U54 hart1', 0x000000000015a76(fread+9e): 8082
Info 'FU540/U54 hart1', 0x00000000001043a(main+80): 87aa
                                                                      a5,a0
                                                              mν
Info 'FU540/U54 hart1', 0x00000000001043c(main+82): ffcd
                                                                      a5,103f6
                                                              bnez
Info 'FU540/U54 hart1', 0x0000000000103f6(main+3c): fec42783 lw
                                                                      a5, -20(s0)
Info 'FU540/U54 hart1', 0x0000000000103fa(main+40): 853e
                                                                      a0,a5
Info 'FU540/U54 hart1', 0x00000000000103fc(main+42): fd842783 lw
                                                                      a5,-40(s0)
Info 'FU540/U54 hart1', 0x000000000010400(main+46): 85be
                                                                      a1,a5
Info 'FU540/U54 hart1', 0x0000000000010402(main+48): chacha20qr1 a0,a0,a1
Info 'FU540/U54 hart1', 0x000000000010406(main+4c): chacha20gr2 a0,a0,a1
Info 'FU540/U54 hart1', 0x00000000001040a(main+50): chacha20gr3 a0,a0,a1
Info 'FU540/U54 hart1', 0x000000000001040e(main+54): chacha20qr4 a0,a0,a1
Info 'FU540/U54_hart1', 0x0000000000010412(main+58): chacha20qr1 a0,a0,a1
<u>    Info 'FU540/U54 hart1', 0x000000000010416(main+5c): chacha20qr2 a0,a0,a1</u>
Info 'FU540/U54 hart1', 0x00000000001041a(main+60): chacha20gr3 a0,a0,a1
Info 'FU540/U54 hart1', 0x00000000001041e(main+64): chacha20gr4 a0,a0,a1
Info 'FU540/U54 hart1', 0x000000000010422(main+68): 87aa
Info 'FU540/U54 hart1', 0x0000000000010424(main+6a): fef42623 sw
                                                                      a5, -20(s0)
Info 'FU540/U54_hart1', 0x0000000000010428(main+6e): fd840793 addi
                                                                      a5, s0, -40
Info 'FU540/U54 hart1', 0x000000000001042c(main+72): fe043683 ld
                                                                      a3, -32(s0)
Info 'FU540/U54 hart1', 0x000000000010430(main+76): 4605
                                                                      a2,1
Info 'FU540/U54_hart1', 0x000000000010432(main+78): 4591
                                                                      a1.4
```

Virtual Platform Console


root@ucbvax:~#

Software Development using Ashling RISC-V IDE

- Ashling RISC-V IDE Integrates with Imperas Virtual Platforms/Processor Models
- IDE supports full software development cycle including edit, build, debug, test and verification on the actual Virtual Platform or Processor Model all from a user-friendly Eclipse based IDE environment



Software Development using Ashling RISC-V IDE cont'd

- The same software toolchain/IDE can be used throughout the complete design cycle....from simulation using the Imperas models to device/board bring-up with actual silicon
- Includes latest RISC-V compilers including GCC and LLVM


Imperas & Ashling solutions

Methodology

Collaboration with customers, vendor ecosystem

Models

200+ CPU models 200+ peripheral models 50+ EPK (Extendable Platform Kits)

Tools

Leading simulation, debug, software verification tools

Resources

Imperas and partners Model development Tool development

Training

Imperas and partners On-site, customized agenda

Virtual Platforms Accelerate Software Development

- Risk-free addition of custom instruction extensions without disrupting model quality
- Complete the virtual prototype before silicon or even RTL is available
- Accelerate software development and porting of existing software
- Use EPK for
 - Ecosystem partners
 - Early application development
 - Lead customers

Contact

Hugh O'Keeffe

Engineering Director

hugh.okeeffe@ashling.com

Lee Moore

Applications Engineering

moore@imperas.com

Kevin McDermott

kevinm@imperas.com

http://www.ashling.com

http://www.imperas.com

http://www.ovpworld.org