RENESAS
DEVCON B MULTICORE DESIGN SIMPLIFIED

Enabling the Smart Society Im eras
OCTOBER 22-25, 2012

HYATT REGENCY ORANGE COUNTY

Virtual Platform Based Software Testing

Larry Lapides
Imperas Software Ltd

Class ID: 0C19B

Renesas Electronics America Inc.

©-2012 Renesas-Electronics-"America-Inc.-All-rights-reserved.




Larry Lapides

VP worldwide sales, responsible for sales and
marketing at Imperas Software Ltd

VP worldwide sales at Averant and Calypto
Design Systems

VP of worldwide sales at Verisity, including
for the 2001 IPO

Sales and marketing for Exemplar Logic and
Mentor Graphics

Entrepreneur-in-Residence at Clark
University’s Graduate School of Management

BA in Physics from the University of California Berkeley

MS in Applied and Engineering Physics from Cornell University
MBA from Clark University

Food and wine — contributor to ViciVino.com

MULTICORE DESIGN SIMPLIFIED
DEvCON [ | 5EraS
Enabl he S



Agenda

B Silicon without software is just sand...
® [ssues in embedded software development
® Software quality / testing
B What is a virtual platform?
® Building a virtual platform
® Requirements for a virtual platform testing environment
B Case studies for virtual platform based software testing
® System testing — integration with Simulink
® Software regression testing
® |In depth software analysis: exception behavior
® Fault injection
B Summary, Q&A

MULTICORE DESIGN SIMPLIFIED
© 2012 Imperas Software Ltd. All rights reserved. DEVCON _ Im:ﬁJE@eras
Enablir



Agenda

B Silicon without software is just sand...
® [ssues in embedded software development
® Software quality / testing

B What is a virtual platform?

B Case studies for virtual platform based software testing
B Summary, Q&A

MULTICORE DESIGN SIMPLIFIED
DEvCON [ | 5EraS
Enabl he S



Silicon Without Software Is Just Sand

v' Software development is
costing more than chip
development cost

v" Embedded software is
the critical path to
system delivery

v' Source code is doubling

TR annually

/ Photo courtesy of Renesas i i

/ Electronics Corporation v Software CompleX|ty IS

increasing dramatically

with multi-core devices,
multi-processor systems

v" Products are defined by
their software

B MULTICORE DESIGN SIMPLIFIED
5 © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society




Issues iIn Embedded Software Development

B Quality is critical

B Current development methodology breaks with
Increasing code complexity

B Time to market still counts!

B Management cannot manage the software
development process: insufficient metrics
® You cannot Manage what you cannot measure

MULTICORE DESIGN SIMPLIFIED
© 2012 Imperas Software Ltd. All rights reserved. DEVCON _ Imperas
Enabling the S



Focus for Today’s Presentation:
Software Quality / Testing

B Current test methodologies employ testing on hardware
® Actual hardware
® Prototypes

® Hybrid methods involving simulation driving hardware:
hardware in the loop (HIL)

B These methods lack visibility, controllability

® Visibility: if an error occurs, will it be observed by the test
environment?

® Controllability:
— Can corner cases be tested?
— Can an error be made to happen?

B Virtual platforms — software simulation — provide a
complementary technology to the current methodology

® Simulation promises visibility, controllability
® How to deliver on this promise?

MULTICORE SIMPLIFIED
© 2012 Imperas Software Ltd. All rights reserved. DFVCON _ ImﬁJ@eras
Enabling the S



Software Failures in Embedded Systems Are
Bad!

This Car Runs on Code

February 5, 2010

The avionics system in the F-22 Raptor, the current U.S. Air — -
Fo]!ce frontlige j_?;[]fig;%aé,JconsigtSkOf Ia:bohut 1.7 rrr]\ill(ijorﬂ I(ijnes of failures Responsible for
software code. The F- oint Strike Fighter, scheduled to :

become operational in 2010, will require about 5.7 million lines cal Device Recalls
of code to operate its onboard systems. And Boeing’s new 787
Dreamliner, scheduled to be delivered to customers in 2010,
requires about 6.5 million lines of software code to operate its
avionics and onboard support systems.

b behind 24 percent of all the medical device recalls in 2011, according to
od and Drug Administration, which said it is gearing up its labs to spend

These are impressive amounts of software, yet if you bought a  |he quality and security of software-based medical instruments and

premium-class automobile recently, "it probably contains close
to 100 million lines of software code,” says Manfred Broy, a
professor of informatics at Technical University, Munich, and a ) _ _ _ o
leading expert on software in cars. All that soffware executes  |cience and Engineering Laboratories (OSEL) released the data in its

on 70 to 100 microprocessor-based electronic control units n June 15, amid reports of a compromise of a Web site used to distribute
(ECUs) networked throughout the body of your car. 1osp|tal respirators. The absence of solid architecture and "principled

in software development affects a wide range of medical devices, with
http://news.discovery.com/autos/toyota-recall-software-codg rpmtennally ||fe threatenmg consequences, the Agency said.

There is growing evidence that software security and integrity is a growing problem in the
medical field. In October, for example, security researcher Barnaby Jack demonstrated a
remote, wireless attack on an implantable insulin pump from the firm Medtronic.

https://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012

« Systems are getting more complex
» 70-100 processors in cars

« Software failures can be life-threatening
« Software failures now include security breaches

ULTICORE N SIMPLIFIED
8 © 2012 Imperas Software Ltd. All rights reserved. DFVCON _ IM@eras
Enabling the Smart Society



Agenda

B Silicon without software is just sand...
B What is a virtual platform?

® Building a virtual platform

® Requirements for a virtual platform testing environment
B Case studies for virtual platform based software testing
B Summary, Q&A

MULTICORE DESIGN SIMPLIFIED
© 2012 Imperas Software Ltd. All rights reserved. DEVCON _ Imﬁ]@eras
Enablir



Current Methodology, Software Debug on Prototype:

Run gdbserver on target and Eclipse on host to debug application

on target

i -
Bl D40 Batacis Mawgaie Segeh Do Ben Qugam S Sempls Windos tey
- ERICEE TR St Y TR Y R T Rt o [
3 . Tt -]
o
D Comscle 5 Tasks Memary - [N o
Eclipse/CDT
L Wetabie Semart basert m: '
Redhat Linux

TCP/IP

Host

10 © 2012 Imperas Software Ltd. All rights reserved.

DeEVCON

Enabling the Smart Society

Remote Target

MULTICORE DESIGN SIMPLIFIED

mperas



Using a Virtual Platform Provides Exactly the Same

Environment
(with many of the same limitations)

~ TR SSSSSSSSSSS_—_—_——_o_—oooo——eeeeee, |- f ; i
Bl 8 Frtacie Nowgew Segch B Ben Dugeam Se o iy Wedos el 5 & user1's X desktop (debian:1)
@ F Y R B 0-Re Qe [ NG e @ feie - r [Gowheg) - HEDHBES o W%
=0 e Variable Bresizomts fegaters TEL L

O Deteg B Servers Mudue:

Eclipse/CDT

E
Redhat Linux

Host

V|rtual Platform as Remote Target

MULTICORE DESIGN SIMPLIFIED
11  © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society



Building the Virtual Platform

B The virtual platform is a set of models that reflects the hardware
on which the software will execute

® Subset / subsystem of a single device
® Processor chip
® Board
® System
B Models are typically written in C or SystemC

B Models for individual components — interrupt controller, UART,
ethernet, ... — are connected just like in the hardware

B Peripheral components can be connected to the real world by using
the host workstation resources: keyboard, mouse, screen,
ethernet, USB, ...

B Models can be cycle accurate, cycle approximate, or instruction
accurate, with instruction accurate models providing the highest
simulation performance

MULTICORE DESIGN SIMPLIFIED
12 © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ Im eras
Enabling the Smart Society



INnstruction Accurate Virtual Platforms Run at
100s of MIPS

B To get the high speed required for real usage, processor hardware is
modeled only to the minimum necessary level for correct or plausible
instruction behavior so that software cannot tell it is not running on real
hardware. Other features are approximated or omitted. Some examples:

® Accurately modeled

— Most instructions

— Exceptions

— Structures, such as TLBs, required to allow OS boot
® Approximated

— Tick timers — one “tick” per instruction

— Random number generators (can affect, for example, TLB replacement algorithms)
® Omitted

— Instruction pipelines

— Speculative execution

— Write buffers

— Caches (can be added; not modeled by default)

B General rule — if a feature cannot be modeled with reasonable accuracy,
don’t model it at all (no bogus pretence of accuracy)

13 © 2012 Imperas Software Ltd. All rights reserved.

DevCoN . |Deras



Open Virtual Platforms™ Provides (—\ fj)
the Modelling Infrastructure )

Open Virtual Platforms

B Website community/portal/forum
B Over 6,500 people registered on the website

B Modeling APIs for processor, peripheral, and platform modeling
B Open source library of models (Apache 2.0 open source license)

® Fast Processor Models (100+ by end 2012): ARM, MIPS, Renesas, ...
— Current Renesas processor core models include V850 ES, E1, E1F; M16C
— Short term roadmap includes V850 E2, G3M, G3K; RL78

® Peripheral models: UART, timer, interrupt, ethernet, DMA, 1/0, ...

® \Working platforms: Linux, Nucleus, yC/0S Il, FreeRTOS, bare metal
applications, ...

® OVP™ and SystemC/TLMZ2.0 native interfaces for all models

B OVPsim™ simulator (models need the simulator to execute)
® Runs processor models fast, 100s of mips
® Interfaces to GDB via RSP
® Encapsulation in Eclipse IDE for software and platform debug

MULTICORE DESIGN SIMPLIFIED
14 © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ ImﬁJ@eras
Enabling the Smart Society



Virtual Platform Requirements for Software Test

Performance near real time

Run target binaries without change

Repeatable results

Multi-processor debug capability

Software verification, analysis and profiling tools

DN NI NI NN

o Telnet 172.17.1.144 -[olx]
¥ B

Ppss

chID SLEEPING DETnCHED DESC“EDULED CRNCELLED THREAD

N

N k4
N ¥
N v
N ¥
N ]
N N
N N

CPUID SLEEPING DETACHED DESCHEDULED CANCELLED
] a N ¥ N N

IZZZZZIZ
ZZEZLZE

Other Devices

Keyboard

MULTICORE DESIGN SIMPLIFIED
15  © 2012 Imperas Software Ltd. All rights reserved. DEVCON _ IMI@eras
Enabling the Smart Society



Virtual Platform Requirements for Software Test:
Checklist

B Performance near real time
v"Instruction accurate virtual platforms run at 100s of MIPS

Run target binaries without change
Use the same tool chain for compiling as for the real hardware

\ N

Repeatable results
Simulation is a deterministic process, with repeatable results

\ N

B Multi-processor debug capability
® Whether multiple processors on one device or board or system

v" Available either from virtual platform tool vendor or tool chain (IDE) vendor

B Software verification, analysis and profiling tools

B Tools are needed so the virtual platforms can deliver on the simulation
promise of complete controllability, visibility

MULTICORE DESIGN SIMPLIFIED
16 © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ I[ﬁE@eras
Enabling the Smart Society



Virtual Platforms Simulate the
Software Running on the Hardware

results
e.g. elf files

results
e.g. elf files

results(HW) = results(VP)

MULTICORE DESIGN SIMPLIFIED
17  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ I[ﬁE@eras
Enabling the Smart Society

& Operating System

Application Software W

& Operating System

Application Software W




Software Analysis on Hardware Has Accuracy Questions
(code coverage, profiling, ...)

Application Software
& Operating System

Application Software
& Operating System

Add instrumentation,
debug kernel, ...

18  © 2012 Imperas Software Ltd. All rights reserved.

binaries,
e.g. elf files

new binaries,
e.g. elf files

?
results(HW) = results(HW + instrumentation)

Enabling

Peripheral

Peripheral

DeEvCO

the Smart S

Society

-

-

results

i

results

i

_ mperas



Software Analysis on Virtual Platform is Non-Intrusive
(code coverage, profiling, tracing, memory analysis, ...)

Application Software
& Operating System

Application Software
& Operating System

results

Peripheral @

binaries,
e.g. elf files

binaries,
e.g. elf files

Peripheral

instrumentation

results(HW) = results(VP + instrumentation)

MULTICORE DESIGN SIMPLIFIED
19  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ ImﬁJ@eras
Enabling the Smart Society



Virtual Platform with Verification,
Analysis and Profiling (VAP) Tools Plus
Debugger

Output Data

Application Software

& Operating System
I Trace |
S Profile \_
; oo Coverage
: Schedule
d—

B MULTICORE DESIGN SIMPLIFIED
20  © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society



Requirements for VAP (Verification, Analysis &
Profiling) Tools

B Non-intrusive: no modification of application source code
Minimal overhead: simulations should still run fast

B Modular: can run one or more without tools stepping on
each other

B Flexible: interactive or scripted use models
Configurable: adjust for specific platform and focus

B Distributable: need to be shipped with virtual platform as
integral part of SDK for specific platform/chip

MULTICORE DESIGN SIMPLIFIED
21  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ ImﬁJ@eras
Enabling the Smart Society



Agenda

B Silicon without software is just sand...
What is a virtual platform?

B Case studies for virtual platform based software testing
1) System testing — integration with Simulink
2) Software regression testing
3) In depth software analysis: exception behavior
4) Fault injection
B Summary, Q&A

MULTICORE DESIGN SIMPLIFIED
22  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ ImEE@eras
Enabling the Smart Society



Example 1: Simulink Integration

® Simulink and Matlab (Mathworks) are well established tools
for system level simulation and analysis

® At algorithmic level
® No processor/software detail

® Would like to integrate OVPsim and Simulink
® OVPsim typically only needed for Fast Processor Model

a) Use Simulink as test stimuli for software, with OVPsim as
master simulator (OFFIS)
—  Co-Simulation of C-Based SoC Simulators and Matlab Simulink
— Frank Poppen, Kim Gruettner, OFFIS, Oldenberg, Germany
—  Proceedings of the Operation Research Society Simulation Workshop 2012

b) Need more detailed system analysis, use Simulink as master

simulator (FZI)

—  Scalable Problem-Oriented Approach for Dynamic Verification of Embedded
Systems

—  Francisco Mendoza et al, FZI, Karlsruhe, Germany
— 1st IFAC Conference on Embedded Systems, CESCIT 2012

MULTICORE DESIGN SIMPLIFIED
23  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ Im eras
Enabling the Smart Society



OFFI1S Nephron+ System (Medical Electronics)

B Nephron+ research project goal
Is to develop a wearable kidney
filter

® Reduce kidney dialysis visits by
10x (cost savings)

® Improved patient lifestyle

B Use Simulink to model patient-
related physiology parameters,
wearable kidney system

B Use OVPsim to simulate control
device (ARM-based WAKD Control
microcontroller)

B Simulink provides test stimulus
for control software (Nephron+
SW Tasks) running on OVPsim

OffisSimLink

B MULTICORE DESIGN SIMPLIFIED
24 © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society



OFFI1S Integration Detall

B OFFIS developed OffisSimLink OVP peripheral model to
provide interface to Simulink

Host PC

Hello.c

Pausef
C Continue
Sensor=*(REG32 sensorAddress); GOJ
.

*(REG32 actuatorAddress)=Actuator; E““il

e 0

ot Anaon

ISS

Shared Bus

Semihost.dll

sensorAddress ‘ ‘ actuatorAddress startMatlab

syncMatlab L
closeMatlab

OffisSimLink (x86 1SS)

startMatlab | | syncMatlab closeMatlab

intercept function call

B MULTICORE DESIGN SIMPLIFIED
25  © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society




Example 2: Software Regression Testing
(NIRA Dynamics AB, subsidiary of Audi)

B Tire pressure sensors
® Software application only; runs on anti-lock braking

system
— After calibration, detects changes in tire pressure by Y& TR
] changes in braking data . Vorsprung durch Teci:?k: WI
B Use different processors (from different ABS
systems)

® ARM 7, Cortex-M3, Cortex-R4
® Renesas V850
® Need to run the same application on each processor,
SO memory usage is key
B Software test and analysis
® Collect weeks/months of road test data

® Want to run road test data as software regression
suite, 1,000s of tests each night

® \Want to ensure that stack and heap behave properly
(memory analysis tools)
B Imperas M*SDK and OVP Fast Processor Models

® Meets their speed, processor support, memory
analysis requirements

® Virtual platform value is enhanced software testing
capabilities

Peter Lindskog, head of development:
“Imperas M*SDK helps us not only to find bugs in our code, but also in the compilers we use.”
“We will not ship software without testing with Imperas tools.”

MULTICORE DESIGN SIMPLIFIED
DEvCON [ | 5EraS
Enabling the S



Imperas VAP Tools

B OVP Fast Processor Models enable use of VAP tools

B CPU and OS aware
® 90+ CPU cores supported
® OS support: Linux, Nucleus, uCLinux, FreeRTOS, uC/0S |1, eCoS, ultron, proprietary
® Used for hardware-dependent software development
— Early software development
— Software testing
— System analysis
B 25+ M*VAP™ tools: code coverage, profiling (function, OS events), tracing
(instruction, function, event, OS task, OS kernel), memory analysis, ...

Non-intrusive
® No instrumentation or modification of application code
® No change to instruction ordering
Executes as native host code for minimal overhead
Can be used interactively or scripted
Multiple tools can be loaded simultaneously

User defined tools enabled: fault injection, protocol verification, software
behavior analysis, ...

® Users write tools in C

® Documented API

MULTICORE DESIGN SIMPLIFIED
27  © 2012 Imperas Software Ltd. All rights reserved. DEVCON _ Imperas
Enabling the Smart Society



Example 3: In Depth Software Behavior Analysis

B Goal: Use virtual platform visibility to measure the number of
instructions from exception entry to return

B Custom tool developed for analyzing exception handler instruction
counts

® Utilizes VAP Tools infrastructure

— Registers for callbacks on exceptions and their returns
* VapHelper provides callbacks on entry and return from exception
* CpuHelper detects and provides details of exceptions

Adds new command to simulation environment to turn on/off tracing
Simply reports entries and returns with elapsed instruction counts

® Could easily be enhanced to provide statistical analysis, report worst
case occurrences, provide call stack snapshot at exception, provide
RTOS process information, etc.

MULTICORE DESIGN SIMPLIFIED
© 2012 Imperas Software Ltd. All rights reserved. DEVCON _ ImﬁJ@eras
Enabling the S



Simulation Infrastructure Enables Tool Definition

results

binaries, ,.\-
e.g-eiffiles

& Operating System

Application Software JHH

instrumentation

OVP Fast Processor Model:
CPU functionality, predefined views, events, actions

CPU and OS Helpers:
CPU and OS specific information

Tool Helper:
APl enabling user-definition of software analysis tools

VAP Tool:
Definition of the tool, written in C

MULTICORE DESIGN SIMPLIFIED
29  © 2012 Imperas Software Ltd. All rights reserved. DEVCO _ ImﬁJ@eras
Enabling the Smart Society

Simulation Infrastructure




Exception Analysis Tool

CPU Helper

 When “exception” event occurs:
+ Determines all the addresses this exception might return to
* Produces a description string for the event

Instruction 1
Instruction 2

Tool Helper

é;(ce tion * When notified of an “exception” event
P : + Determines and saves the current context of the processor
Instruction N * Registers intercepts on all possible return addresses

Instruction N+1 « When exception return address is intercepted

+ Determines if context matches a previously observed
Instruction N+M exception

Exception Return

Instruction

OVP Fast Processor Model
predefined “exception” event

Exception Analysis Tool
« Adds a user command to enable/disable exception tracing
 When notified of an exception entry
» Creates data structure, including instruction count on entry
« When notified of an exception exit
» Determines elapsed instructions since entry
» Provides report of data collected about the exception event

Show Exception Analysis Tool

MULTICORE SIMPLIFIED
30  © 2012 Imperas Software Ltd. All rights reserved. DFVCON _ Imﬁnperas
Enabling the S



Exception Analysis Tool: Results

B Exception analysis tool is used interactively as application is running
® Could be used in script

B Reports where exception was taken and returned
B Calculates instructions between exception entry and return

s C:AWINDOWS\system32\cmd.exe

‘mipsel_hda'
‘mipsel_hdb'
‘mipsel_cd'

1 (1) 0x1d <= Ox0

unsupported COPD register 21 sel O

imperas (mipslel) = idebug
————————————————— EMTER DEEUG MODE -----=--—----—-—-—--—--
idebug mipslel) > ::extrace
idebug (mipslel) >
arning CIDE) /MipsMaltalLinux/PIIX4-IDE: Failed to open file
arning (IDED) /MipsMaltalinux/PIIX4-IDE: Failed to open file
arning C(IDE) /MipsMaltalLinux/PIIX4-IDE: Failed to open file
arning (DMA_UNS) /MipsMaltalinux/PIIx4-IDE: PCI DMA ch
Info (MIPS3Z?_TIAS_COPO_WRITE) Ox8048d250: write to
TRC (EXCP_TRD 200904090: 'mipslel':Exception 1 at OxB015fed(:
TRC (EXCP_TR) 200906043: 'mipslel’':Exception 1 at Oxs8015fed4d
TRC C(EXCP_TR) 201904090: 'mipslel’':Exception 2 at Oxs804854fc:
TRC (EXCP_TRD 201905753: 'mipslel':Exception 2 at 0OxB04854fc
TRC (EXCP_TR) 202904090: 'mipslel’' :Exception 3 at Oxs0485414:
TRC C(EXCP_TR) 202905748: 'mipslel’' :Exception 3 at Oxs804854F4
TRC (EXCP_TRD 203904090: 'mipslel':Exception 4 at 0OxB0O100bL6E:
TRC (EXCP_TR) 203905748: 'mipslel’' :Exception 4 at 0Oxs80100b6s
TRC C(EXCP_TR) 204904090: 'mipslel’' :Exception 5 at Oxs80100bb6c:
TRC (EXCP_TRD 204905748: 'mipslel':Exception 5 at 0xB0100b6c
TRC (EXCP_TR) 205904090: 'mipslel’' :Exception 6 at Oxs0100bbc:
TRC C(EXCP_TR) 205905748: 'mipslel’' :Exception 6 at 0Oxs80100b6c
TRC (EXCP_TRD 206904090: 'mipslel':Exception 7 at OxB0100bbc:
TRC (EXCP_TR) 206905748: 'mipslel’':Exception 7 at 0Oxs80100bbc
TRC C(EXCP_TR) 207904090: 'mipslel’' :Exception B at Oxs80100bbc:
TRC (EXCP_TRD 207905748: 'mipslel':Exception 8 at 0xB0100bb6c
TRC (EXCP_TR) 208904090: 'mipslel’' :Exception 9 at Oxs0100bbc:
TRC C(EXCP_TR) 208905748: 'mipslel’':Exception 9 at 0x80100b6c
TRC (EXCP_TRD 209904090: 'mipslel':Exception 1

excCode_Int Timer (cause=0x408080007

returned.

excCode_Int Timer (cause=0xc0B0E000)

returned.

excCode_Int Timer (Cause=0x40808000)

returned.

excCode_Int Timer (cause=0x408080007

returned.

excCode_Int Timer (cause=0x40808000)

returned.

excCode_Int Timer (Cause=0x40808000)

returned.

excCode_Int Timer (cause=0xc0OB0E0007

returned.

excCode_Int Timer (cause=0x40808000)

returned.

excCode_Int Timer (Cause=0xc0E08000)

returned.

[1953 instrs]
[1663 instrs]
[165%8 instrs]
[1658 instrs]
[1658 instrs]
[165%8 instrs]
[1658 instrs]
[1658 instrs]
[165%8 instrs]

0 at OxB0100b6c: ewxcCode_Int Timer (cause=0x4080B000) ~|

31 © 2012 Imperas Software Ltd. All rights reserved.

DeEVCON

Enabling the Smart Society

Run Exception Analysis Demo

_ mperas




Example 4: Fault Injection

B Goal: Use virtual platform controllability to analyze failure modes

® Virtual platform is able to inject failures that are difficult or impossible to recreate
deliberately in the actual hardware

B Fault injection first used for software/system testing around 1970
B Recently elevated in importance in automotive electronics due to 1ISO 26262
failsafe requirements

® Also applicable to requirements in aerospace, medical and other applications with
critical systems

® Should be an important tool for testing security in all embedded systems

B Custom tool developed for changing instructions prior to execution on
simulator engine

binaries

results
inari ; Perlpheral @
e.g. elf files >

Application Software
& Operating System

fault injection

DevCoN R i heras

32  © 2012 Imperas Software Ltd. All rights reserved.




Key Concepts in Fault Injection

B Fault injection: the deliberate insertion of faults into an operational system
to determine its response

B Triggers: when and where faults are inserted

B Failure modes
® \What the fault does to system to cause an error to occur
® For example: locking, drifting, oscillation, delay, ...

B Observation: how the failure response is determined

B Fault injection in virtual platform environments can be black box or white
box

® Black box
— Treat the system as a black box, and just perturb from the outside
— This is the way hardware based fault injection works

® \White box
— Open up the system

— Enables full control over triggering
Can be predetermined/random, event/timing/instruction triggered, ...
Can focus on specific failure modes if needed

— Important to perturb only what you want to perturb

By implementing changes (faults) at the simulator engine, and not in the application source, full
controllability is achieved

B Virtual platforms also enable complete observability of failure caused
responses

MULTICORE DESIGN SIMPLIFIED
33  © 2012 Imperas Software Ltd. All rights reserved. DEVCON _ I[ﬁE@eras
Enabling the Smart Society



Fault Injection Custom Tool

B Instructions are “intercepted” at simulation engine prior to execution
® Instructions can be changed before execution
® Complete control over generation of faults

B White box fault injection
® Randomly trigger corruption of an instruction
® Randomly corrupt an individual bit of an instruction
® Reports when / where fault was injected

Execution starts, 2000000 runs through Dhrystone

FAULT 0x001002a4( 3004905): 0x0000580d -> 0x00005805(*bit= 3) ( mov) 16 Bits
FAULT 0x00100b8c( 12312824): 0x000059e8 -> 0x000059f8(bit= 4) ( cmp) 16 Bits
FAULT 0x00100b8c( 17912768): 0x000059f8 -> 0x00005bf8(*bit= 9) ( cmp) 16 Bits
FAULT 0x00100b7e( 19676187): 0x00006f0c -> 0x00016f0c(*bit=16) ( ld.b) 32 Bits
FAULT 0x00100b86( 26529726): 0x00006f4c -> 0x20006f4c(*bit=29) ( st.b) 32 Bits
FAULT 0x00100b7a( 34399330): 0x00006007 -> 0x00006087 (*bit= 7) ( mov) 16 Bits
FAULT 0x00100b8e( 38537367): 0x0000f5ea -> 0x0000f5e2(”bit= 3) ( b) 16 Bits
FAULT 0x00100a94( 47901218): 0x0015e763 -> 0x001de763("bit=19) ( st.w) 32 Bits
FAULT 0x0010021a( 52556124): 0x0001ef6a -> 0x0000ef6a(*bit=16) ( st.w) 32 Bits
FAULT 0x001000e6( 60904500): 0x00115640 -> 0x00515640("bit=22) ( movhi) 32 Bits

MULTICORE DESIGN SIMPLIFIED
DeEvCo Inperas
Enabling the Smart Society

34  © 2012 Imperas Software Ltd. All rights reserved.




Virtual Platform Based Software Testing Enhances
Current Methodology for Automotive and Other
Embedded Systems

B Simulation (virtual platforms) enables full visibility,
controllability of software

B Tools are needed — more than just simulation — to deliver on
the promise of visibility, controllability

B Verification, analysis and profiling tools for virtual platforms
provide complementary capability (white box testing) to
existing test methodology

= MULTICORE DESIGN SIMPLIFIED
35 © 2012 Imperas Software Ltd. All rights reserved. DEVCON _ ImE| D )e ras
Enabling the Smart Society



Questions?

36  © 2012 Imperas Software Ltd. All rights reserved.

DEVCON MULTICORE DESIGN SIMPLIFIED
Enabling the Smart Society _ Imperas



I Please Provide Your Feedback...

B Please utilize the ‘Guidebook’ application to leave
feedback .

Or

B Ask me for the paper feedback form for you to
use...

MULTICORE DESIGN SIMPLIFIED
37 © 2012 Imperas Software Ltd. All rights reserved. DEVCON Im eras
Enabling the Smart Society




DEVCON  jiperas

Enabling the Smart Society

LENESAS

Renesas Electronics America Inc.
© 2012 Renesas Electronics America Inc. All rights reserved.



	Virtual Platform Based Software Testing
	Larry Lapides
	Agenda
	Agenda
	Silicon Without Software Is Just Sand
	Issues in Embedded Software Development
	Focus for Today’s Presentation:  �Software Quality / Testing
	Software Failures in Embedded Systems Are Bad!
	Agenda
	Current Methodology, Software Debug on Prototype:�Run gdbserver on target and Eclipse on host to debug application �on target
	Using a Virtual Platform Provides Exactly the Same Environment�(with many of the same limitations)
	Building the Virtual Platform
	Instruction Accurate Virtual Platforms Run at �100s of MIPS
	Open Virtual Platforms™ Provides the Modelling Infrastructure
	Virtual Platform Requirements for Software Test
	Virtual Platform Requirements for Software Test:�Checklist
	Virtual Platforms Simulate the Software Running on the Hardware
	Software Analysis on Hardware Has Accuracy Questions�(code coverage, profiling, …)
	Software Analysis on Virtual Platform is Non-Intrusive�(code coverage, profiling, tracing, memory analysis, …)
	Virtual Platform with Verification, Analysis and Profiling (VAP) Tools Plus Debugger
	Requirements for VAP (Verification, Analysis & Profiling) Tools
	Agenda
	Example 1:  Simulink Integration
	OFFIS Nephron+ System (Medical Electronics)
	OFFIS Integration Detail
	Example 2:  Software Regression Testing   �(NIRA Dynamics AB, subsidiary of Audi)
	Imperas VAP Tools
	Example 3:  In Depth Software Behavior Analysis
	Simulation Infrastructure Enables Tool Definition
	Exception Analysis Tool
	Exception Analysis Tool:  Results
	Example 4:  Fault Injection
	Key Concepts in Fault Injection
	Fault Injection Custom Tool
	Virtual Platform Based Software Testing Enhances Current Methodology for Automotive and Other Embedded Systems
	Please Provide Your Feedback…

