
Class ID: 0C19B

Virtual Platform Based Software Testing

Larry Lapides
Imperas Software Ltd

Renesas Electronics America Inc.
© 2012 Renesas Electronics America Inc. All rights reserved.

© 2012 Imperas Software Ltd. All rights reserved.2

VP worldwide sales, responsible for sales and
marketing at Imperas Software Ltd

VP worldwide sales at Averant and Calypto
Design Systems
VP of worldwide sales at Verisity, including
for the 2001 IPO
Sales and marketing for Exemplar Logic and
Mentor Graphics
Entrepreneur-in-Residence at Clark
University’s Graduate School of Management

Larry Lapides

BA in Physics from the University of California Berkeley
MS in Applied and Engineering Physics from Cornell University
MBA from Clark University

Food and wine – contributor to ViciVino.com

© 2012 Imperas Software Ltd. All rights reserved.3

Agenda

Silicon without software is just sand…
Issues in embedded software development
Software quality / testing

What is a virtual platform?
Building a virtual platform
Requirements for a virtual platform testing environment

Case studies for virtual platform based software testing
System testing – integration with Simulink
Software regression testing
In depth software analysis: exception behavior
Fault injection

Summary, Q&A

© 2012 Imperas Software Ltd. All rights reserved.4

Agenda

Silicon without software is just sand…
Issues in embedded software development
Software quality / testing

What is a virtual platform?
Case studies for virtual platform based software testing
Summary, Q&A

© 2012 Imperas Software Ltd. All rights reserved.5

Silicon Without Software Is Just Sand

Software development is
costing more than chip
development cost
Embedded software is
the critical path to
system delivery
Source code is doubling
annually
Software complexity is
increasing dramatically
with multi-core devices,
multi-processor systems
Products are defined by
their software

Photo courtesy of Renesas
Electronics Corporation

© 2012 Imperas Software Ltd. All rights reserved.6

Issues in Embedded Software Development

Quality is critical
Current development methodology breaks with
increasing code complexity
Time to market still counts!
Management cannot manage the software
development process: insufficient metrics

You cannot manage what you cannot measure

© 2012 Imperas Software Ltd. All rights reserved.7

Focus for Today’s Presentation:
Software Quality / Testing

Current test methodologies employ testing on hardware
Actual hardware
Prototypes
Hybrid methods involving simulation driving hardware:
hardware in the loop (HIL)

These methods lack visibility, controllability
Visibility: if an error occurs, will it be observed by the test
environment?
Controllability:

– Can corner cases be tested?
– Can an error be made to happen?

Virtual platforms – software simulation – provide a
complementary technology to the current methodology

Simulation promises visibility, controllability
How to deliver on this promise?

© 2012 Imperas Software Ltd. All rights reserved.8

https://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012

FDA: Software Failures Responsible for
24% Of All Medical Device Recalls

June 20, 2012

Software failures were behind 24 percent of all the medical device recalls in 2011, according to
data from the U.S. Food and Drug Administration, which said it is gearing up its labs to spend
more time analyzing the quality and security of software-based medical instruments and
equipment.

The FDA's Office of Science and Engineering Laboratories (OSEL) released the data in its
2011 Annual Report on June 15, amid reports of a compromise of a Web site used to distribute
software updates for hospital respirators. The absence of solid architecture and "principled
engineering practices" in software development affects a wide range of medical devices, with
potentially life-threatening consequences, the Agency said.

There is growing evidence that software security and integrity is a growing problem in the
medical field. In October, for example, security researcher Barnaby Jack demonstrated a
remote, wireless attack on an implantable insulin pump from the firm Medtronic.

Software Failures in Embedded Systems Are
Bad!

This Car Runs on Code

February 5, 2010

The avionics system in the F-22 Raptor, the current U.S. Air
Force frontline jet fighter, consists of about 1.7 million lines of
software code. The F-35 Joint Strike Fighter, scheduled to
become operational in 2010, will require about 5.7 million lines
of code to operate its onboard systems. And Boeing’s new 787
Dreamliner, scheduled to be delivered to customers in 2010,
requires about 6.5 million lines of software code to operate its
avionics and onboard support systems.

These are impressive amounts of software, yet if you bought a
premium-class automobile recently, ”it probably contains close
to 100 million lines of software code,” says Manfred Broy, a
professor of informatics at Technical University, Munich, and a
leading expert on software in cars. All that software executes
on 70 to 100 microprocessor-based electronic control units
(ECUs) networked throughout the body of your car.

http://news.discovery.com/autos/toyota-recall-software-code.html

• Systems are getting more complex
• 70-100 processors in cars

• Software failures can be life-threatening
• Software failures now include security breaches

© 2012 Imperas Software Ltd. All rights reserved.9

Agenda

Silicon without software is just sand…
What is a virtual platform?

Building a virtual platform
Requirements for a virtual platform testing environment

Case studies for virtual platform based software testing
Summary, Q&A

© 2012 Imperas Software Ltd. All rights reserved.10

Current Methodology, Software Debug on Prototype:
Run gdbserver on target and Eclipse on host to debug application
on target

TCP/IP

Host

Remote Target

BlackBox Window
Manager

gdbserver

application

Redhat LinuxRedhat Linux

Eclipse/CDT

Debian Linux 2.6

© 2012 Imperas Software Ltd. All rights reserved.11

Virtual Platform as Remote Target

TCP/IP

Using a Virtual Platform Provides Exactly the Same
Environment
(with many of the same limitations)

Host

Debian Linux 2.6

BlackBox Window
Manager

gdbserver

application

Redhat LinuxRedhat Linux

Eclipse/CDT

© 2012 Imperas Software Ltd. All rights reserved.12

Building the Virtual Platform

The virtual platform is a set of models that reflects the hardware
on which the software will execute

Subset / subsystem of a single device
Processor chip
Board
System

Models are typically written in C or SystemC
Models for individual components – interrupt controller, UART,
ethernet, … – are connected just like in the hardware
Peripheral components can be connected to the real world by using
the host workstation resources: keyboard, mouse, screen,
ethernet, USB, …
Models can be cycle accurate, cycle approximate, or instruction
accurate, with instruction accurate models providing the highest
simulation performance

© 2012 Imperas Software Ltd. All rights reserved.13

Instruction Accurate Virtual Platforms Run at
100s of MIPS

To get the high speed required for real usage, processor hardware is
modeled only to the minimum necessary level for correct or plausible
instruction behavior so that software cannot tell it is not running on real
hardware. Other features are approximated or omitted. Some examples:

Accurately modeled
– Most instructions
– Exceptions
– Structures, such as TLBs, required to allow OS boot

Approximated
– Tick timers – one “tick” per instruction
– Random number generators (can affect, for example, TLB replacement algorithms)

Omitted
– Instruction pipelines
– Speculative execution
– Write buffers
– Caches (can be added; not modeled by default)

General rule – if a feature cannot be modeled with reasonable accuracy,
don’t model it at all (no bogus pretence of accuracy)

© 2012 Imperas Software Ltd. All rights reserved.14

Open Virtual Platforms™ Provides
the Modelling Infrastructure

Website community/portal/forum
Over 6,500 people registered on the website

Modeling APIs for processor, peripheral, and platform modeling
Open source library of models (Apache 2.0 open source license)

Fast Processor Models (100+ by end 2012): ARM, MIPS, Renesas, …
– Current Renesas processor core models include V850 ES, E1, E1F; M16C
– Short term roadmap includes V850 E2, G3M, G3K; RL78

Peripheral models: UART, timer, interrupt, ethernet, DMA, I/O, …
Working platforms: Linux, Nucleus, μC/OS II, FreeRTOS, bare metal
applications, …
OVP™ and SystemC/TLM2.0 native interfaces for all models

OVPsim™ simulator (models need the simulator to execute)
Runs processor models fast, 100s of mips
Interfaces to GDB via RSP
Encapsulation in Eclipse IDE for software and platform debug

© 2012 Imperas Software Ltd. All rights reserved.15

Virtual Platform Requirements for Software Test

Performance near real time
Run target binaries without change
Repeatable results
Multi-processor debug capability
Software verification, analysis and profiling tools ARM Cortex™-A9MPx4

Memory

GIC

Other Devices

Keyboard

Cortex-
A9

GIC

Cortex-
A9

GIC

Cortex-
A9

GIC

Cortex-
A9

UART

irq

© 2012 Imperas Software Ltd. All rights reserved.16

Virtual Platform Requirements for Software Test:
Checklist

Performance near real time
Instruction accurate virtual platforms run at 100s of MIPS

Run target binaries without change
Use the same tool chain for compiling as for the real hardware

Repeatable results
Simulation is a deterministic process, with repeatable results

Multi-processor debug capability
Whether multiple processors on one device or board or system

Available either from virtual platform tool vendor or tool chain (IDE) vendor

Software verification, analysis and profiling tools
Tools are needed so the virtual platforms can deliver on the simulation
promise of complete controllability, visibility

© 2012 Imperas Software Ltd. All rights reserved.17

Virtual Platforms Simulate the
Software Running on the Hardware

Virtual Platform
simulation engine

Memory

Peripheral

OVP
CPU

B
U
S

OVP
CPU

Application Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

Hardware

Memory

Peripheral

CPU

B
U
S

CPUApplication Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

results(HW) = results(VP)

© 2012 Imperas Software Ltd. All rights reserved.18

Software Analysis on Hardware Has Accuracy Questions
(code coverage, profiling, …)

Hardware

Memory

Peripheral

CPU

B
U
S

CPUApplication Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

Hardware

Memory

Peripheral

CPU

B
U
S

CPU

Application Software
& Operating System

Application Software
& Operating System

results

new binaries,
e.g. elf files

Add instrumentation,
debug kernel, …

Add instrumentation,
debug kernel, …

results(HW) = results(HW + instrumentation)
?

© 2012 Imperas Software Ltd. All rights reserved.19

Software Analysis on Virtual Platform is Non-Intrusive
(code coverage, profiling, tracing, memory analysis, …)

Hardware

Memory

Peripheral

CPU

B
U
S

CPUApplication Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

results(HW) = results(VP + instrumentation)

Virtual Platform
simulation engine

Memory

Peripheral

OVP
CPU

B
U
S

OVP
CPU

Application Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

instrumentationinstrumentation

© 2012 Imperas Software Ltd. All rights reserved.20

Imperas M*SIM
simulation engine
Imperas M*SIM

simulation engine

Virtual Platform with Verification,
Analysis and Profiling (VAP) Tools Plus
Debugger

Application Software
& Operating System

Application Software
& Operating System

T
E
S
T
B
E
N
C
H

Virtual Platform

Memory

Peripheral

OVP
CPU

B
U
S

OVP
CPU

C
P
U

H
E
L
P
E
R

V
A
P

T
O
O
L
S

O
S

H
E
L
P
E
R

Trace
Profile
Coverage
Schedule
…

Output Data

MULTI-
PROCESSOR/
MULTI-CORE
DEBUGGER

© 2012 Imperas Software Ltd. All rights reserved.21

Requirements for VAP (Verification, Analysis &
Profiling) Tools

Non-intrusive: no modification of application source code
Minimal overhead: simulations should still run fast
Modular: can run one or more without tools stepping on
each other
Flexible: interactive or scripted use models
Configurable: adjust for specific platform and focus
Distributable: need to be shipped with virtual platform as
integral part of SDK for specific platform/chip

© 2012 Imperas Software Ltd. All rights reserved.22

Agenda

Silicon without software is just sand…
What is a virtual platform?
Case studies for virtual platform based software testing
1) System testing – integration with Simulink
2) Software regression testing
3) In depth software analysis: exception behavior
4) Fault injection

Summary, Q&A

© 2012 Imperas Software Ltd. All rights reserved.23

Example 1: Simulink Integration

Simulink and Matlab (Mathworks) are well established tools
for system level simulation and analysis

At algorithmic level
No processor/software detail

Would like to integrate OVPsim and Simulink
OVPsim typically only needed for Fast Processor Model

a) Use Simulink as test stimuli for software, with OVPsim as
master simulator (OFFIS)
– Co-Simulation of C-Based SoC Simulators and Matlab Simulink
– Frank Poppen, Kim Gruettner, OFFIS, Oldenberg, Germany
– Proceedings of the Operation Research Society Simulation Workshop 2012

b) Need more detailed system analysis, use Simulink as master
simulator (FZI)
– Scalable Problem-Oriented Approach for Dynamic Verification of Embedded

Systems
– Francisco Mendoza et al, FZI, Karlsruhe, Germany
– 1st IFAC Conference on Embedded Systems, CESCIT 2012

© 2012 Imperas Software Ltd. All rights reserved.24

OFFIS Nephron+ System (Medical Electronics)

Nephron+ research project goal
is to develop a wearable kidney
filter

Reduce kidney dialysis visits by
10x (cost savings)
Improved patient lifestyle

Use Simulink to model patient-
related physiology parameters,
wearable kidney system
Use OVPsim to simulate control
device (ARM-based
microcontroller)
Simulink provides test stimulus
for control software (Nephron+
SW Tasks) running on OVPsim

© 2012 Imperas Software Ltd. All rights reserved.25

OFFIS Integration Detail

OFFIS developed OffisSimLink OVP peripheral model to
provide interface to Simulink

© 2012 Imperas Software Ltd. All rights reserved.26

Example 2: Software Regression Testing
(NIRA Dynamics AB, subsidiary of Audi)

Tire pressure sensors
Software application only; runs on anti-lock braking
system

– After calibration, detects changes in tire pressure by
changes in braking data

Use different processors (from different ABS
systems)

ARM 7, Cortex-M3, Cortex-R4
Renesas V850
Need to run the same application on each processor,
so memory usage is key

Software test and analysis
Collect weeks/months of road test data
Want to run road test data as software regression
suite, 1,000s of tests each night
Want to ensure that stack and heap behave properly
(memory analysis tools)

Imperas M*SDK and OVP Fast Processor Models
Meets their speed, processor support, memory
analysis requirements
Virtual platform value is enhanced software testing
capabilities

Peter Lindskog, head of development:
“Imperas M*SDK helps us not only to find bugs in our code, but also in the compilers we use.”
“We will not ship software without testing with Imperas tools.”

© 2012 Imperas Software Ltd. All rights reserved.27

Imperas VAP Tools

OVP Fast Processor Models enable use of VAP tools
CPU and OS aware

90+ CPU cores supported
OS support: Linux, Nucleus, uCLinux, FreeRTOS, μC/OS II, eCoS, μItron, proprietary
Used for hardware-dependent software development

– Early software development
– Software testing
– System analysis

25+ M*VAP™ tools: code coverage, profiling (function, OS events), tracing
(instruction, function, event, OS task, OS kernel), memory analysis, …

Non-intrusive
No instrumentation or modification of application code
No change to instruction ordering

Executes as native host code for minimal overhead
Can be used interactively or scripted
Multiple tools can be loaded simultaneously
User defined tools enabled: fault injection, protocol verification, software
behavior analysis, …

Users write tools in C
Documented API

© 2012 Imperas Software Ltd. All rights reserved.28

Example 3: In Depth Software Behavior Analysis

Goal: Use virtual platform visibility to measure the number of
instructions from exception entry to return
Custom tool developed for analyzing exception handler instruction
counts

Utilizes VAP Tools infrastructure
– Registers for callbacks on exceptions and their returns

• VapHelper provides callbacks on entry and return from exception
• CpuHelper detects and provides details of exceptions

Adds new command to simulation environment to turn on/off tracing
Simply reports entries and returns with elapsed instruction counts
Could easily be enhanced to provide statistical analysis, report worst
case occurrences, provide call stack snapshot at exception, provide
RTOS process information, etc.

© 2012 Imperas Software Ltd. All rights reserved.29

Simulation Infrastructure Enables Tool Definition

Virtual Platform
simulation engine

OVP
CPUApplication Software

& Operating System
Application Software
& Operating System

results

binaries,
e.g. elf files

instrumentationinstrumentation

Simulation Engine:
Just In Time (JIT) code morphing (binary translation)

OVP Fast Processor Model:
CPU functionality, predefined views, events, actions

CPU and OS Helpers:
CPU and OS specific information

Tool Helper:
API enabling user-definition of software analysis tools

VAP Tool:
Definition of the tool, written in C

Si
m

ul
at

io
n

In
fr

as
tr

uc
tu

re

© 2012 Imperas Software Ltd. All rights reserved.30

Exception Analysis Tool

Show Exception Analysis Tool

Instruction 1
Instruction 2
…
Exception

Instruction N
Instruction N+1
…
Instruction N+M

Exception Return
Instruction
…

Si
m

ul
at

or
 E

ng
in

e

O
VP

 F
as

t P
ro

ce
ss

or
 M

od
el

pr
ed

ef
in

ed
 “

ex
ce

pt
io

n”
ev

en
t

CPU Helper
• When “exception” event occurs:

• Determines all the addresses this exception might return to
• Produces a description string for the event

Tool Helper
• When notified of an “exception” event

• Determines and saves the current context of the processor
• Registers intercepts on all possible return addresses

• When exception return address is intercepted
• Determines if context matches a previously observed

exception

Exception Analysis Tool
• Adds a user command to enable/disable exception tracing
• When notified of an exception entry

• Creates data structure, including instruction count on entry
• When notified of an exception exit

• Determines elapsed instructions since entry
• Provides report of data collected about the exception event

© 2012 Imperas Software Ltd. All rights reserved.31

Exception Analysis Tool: Results

Exception analysis tool is used interactively as application is running
Could be used in script

Reports where exception was taken and returned
Calculates instructions between exception entry and return

Run Exception Analysis Demo

© 2012 Imperas Software Ltd. All rights reserved.32

Example 4: Fault Injection

Goal: Use virtual platform controllability to analyze failure modes
Virtual platform is able to inject failures that are difficult or impossible to recreate
deliberately in the actual hardware

Fault injection first used for software/system testing around 1970
Recently elevated in importance in automotive electronics due to ISO 26262
failsafe requirements

Also applicable to requirements in aerospace, medical and other applications with
critical systems
Should be an important tool for testing security in all embedded systems

Custom tool developed for changing instructions prior to execution on
simulator engine

Virtual Platform
simulation engine

Memory

Peripheral

OVP
CPU

B
U
S

OVP
CPU

Application Software
& Operating System

Application Software
& Operating System

results

binaries,
e.g. elf files

fault injectionfault injection

© 2012 Imperas Software Ltd. All rights reserved.33

Key Concepts in Fault Injection

Fault injection: the deliberate insertion of faults into an operational system
to determine its response
Triggers: when and where faults are inserted
Failure modes

What the fault does to system to cause an error to occur
For example: locking, drifting, oscillation, delay, …

Observation: how the failure response is determined

Fault injection in virtual platform environments can be black box or white
box

Black box
– Treat the system as a black box, and just perturb from the outside
– This is the way hardware based fault injection works

White box
– Open up the system
– Enables full control over triggering

• Can be predetermined/random, event/timing/instruction triggered, …
• Can focus on specific failure modes if needed

– Important to perturb only what you want to perturb
• By implementing changes (faults) at the simulator engine, and not in the application source, full

controllability is achieved

Virtual platforms also enable complete observability of failure caused
responses

© 2012 Imperas Software Ltd. All rights reserved.34

Fault Injection Custom Tool

Instructions are “intercepted” at simulation engine prior to execution
Instructions can be changed before execution
Complete control over generation of faults

White box fault injection
Randomly trigger corruption of an instruction
Randomly corrupt an individual bit of an instruction
Reports when / where fault was injected

Execution starts, 2000000 runs through Dhrystone
FAULT 0x001002a4(3004905): 0x0000580d -> 0x00005805(^bit= 3) (mov) 16 Bits
FAULT 0x00100b8c(12312824): 0x000059e8 -> 0x000059f8(^bit= 4) (cmp) 16 Bits
FAULT 0x00100b8c(17912768): 0x000059f8 -> 0x00005bf8(^bit= 9) (cmp) 16 Bits
FAULT 0x00100b7e(19676187): 0x00006f0c -> 0x00016f0c(^bit=16) (ld.b) 32 Bits
FAULT 0x00100b86(26529726): 0x00006f4c -> 0x20006f4c(^bit=29) (st.b) 32 Bits
FAULT 0x00100b7a(34399330): 0x00006007 -> 0x00006087(^bit= 7) (mov) 16 Bits
FAULT 0x00100b8e(38537367): 0x0000f5ea -> 0x0000f5e2(^bit= 3) (b) 16 Bits
FAULT 0x00100a94(47901218): 0x0015e763 -> 0x001de763(^bit=19) (st.w) 32 Bits
FAULT 0x0010021a(52556124): 0x0001ef6a -> 0x0000ef6a(^bit=16) (st.w) 32 Bits
FAULT 0x001000e6(60904500): 0x00115640 -> 0x00515640(^bit=22) (movhi) 32 Bits

© 2012 Imperas Software Ltd. All rights reserved.35

Virtual Platform Based Software Testing Enhances
Current Methodology for Automotive and Other
Embedded Systems

Simulation (virtual platforms) enables full visibility,
controllability of software
Tools are needed – more than just simulation – to deliver on
the promise of visibility, controllability
Verification, analysis and profiling tools for virtual platforms
provide complementary capability (white box testing) to
existing test methodology

Simulation (virtual platforms) enables full visibility,
controllability of software
Tools are needed – more than just simulation – to deliver on
the promise of visibility, controllability
Verification, analysis and profiling tools for virtual platforms
provide complementary capability (white box testing) to
existing test methodology

© 2012 Imperas Software Ltd. All rights reserved.36

Questions?Questions?

© 2012 Imperas Software Ltd. All rights reserved.37

Please utilize the ‘Guidebook’ application to leave
feedback

Or
Ask me for the paper feedback form for you to
use…

Please Provide Your Feedback…

© 2012 Imperas Software Ltd. All rights reserved.38

Renesas Electronics America Inc.
© 2012 Renesas Electronics America Inc. All rights reserved.

	Virtual Platform Based Software Testing
	Larry Lapides
	Agenda
	Agenda
	Silicon Without Software Is Just Sand
	Issues in Embedded Software Development
	Focus for Today’s Presentation: �Software Quality / Testing
	Software Failures in Embedded Systems Are Bad!
	Agenda
	Current Methodology, Software Debug on Prototype:�Run gdbserver on target and Eclipse on host to debug application �on target
	Using a Virtual Platform Provides Exactly the Same Environment�(with many of the same limitations)
	Building the Virtual Platform
	Instruction Accurate Virtual Platforms Run at �100s of MIPS
	Open Virtual Platforms™ Provides the Modelling Infrastructure
	Virtual Platform Requirements for Software Test
	Virtual Platform Requirements for Software Test:�Checklist
	Virtual Platforms Simulate the Software Running on the Hardware
	Software Analysis on Hardware Has Accuracy Questions�(code coverage, profiling, …)
	Software Analysis on Virtual Platform is Non-Intrusive�(code coverage, profiling, tracing, memory analysis, …)
	Virtual Platform with Verification, Analysis and Profiling (VAP) Tools Plus Debugger
	Requirements for VAP (Verification, Analysis & Profiling) Tools
	Agenda
	Example 1: Simulink Integration
	OFFIS Nephron+ System (Medical Electronics)
	OFFIS Integration Detail
	Example 2: Software Regression Testing �(NIRA Dynamics AB, subsidiary of Audi)
	Imperas VAP Tools
	Example 3: In Depth Software Behavior Analysis
	Simulation Infrastructure Enables Tool Definition
	Exception Analysis Tool
	Exception Analysis Tool: Results
	Example 4: Fault Injection
	Key Concepts in Fault Injection
	Fault Injection Custom Tool
	Virtual Platform Based Software Testing Enhances Current Methodology for Automotive and Other Embedded Systems
	Please Provide Your Feedback…

